Study of charmonium decays to $K_S^0 K \pi$ in $B \to (K_S^0 K \pi) K$

Antimo Palano INFN Sezione di Bari, Italy On behalf of the LHCb collaboration

QCD@WORK, International Workshop on QCD, theory and experiment Jun 18-21, 2024, Trani-Italy

Introduction

 \Box Charmonium decays, such as J/ψ or η_c decays, address relevant questions in the light meson spectroscopy sector where the issues related to the existence of gluonium or molecular states has not been yet solved.

 \Box One of the still relevant issue is related to the structure of the $K\pi$ S-wave and its resonant composition which has large uncertainties.

 \Box These uncertainties propagate in significant systematic uncertainties in the recent observation of new exotic states in the high statistics amplitude analyses of heavy flavor decays.

 \Box In the present analysis we perform new measurements using η_c decays produced in the decay of B^+ mesons.

Aaij, R. et.al. [LHCb] Study of charmonium decays to $K_S^0 K \pi$ in the $B \to (K_S^0 K \pi) K$ channels, Phys. Rev. D 108, no.3, 032010 (2023) [arXiv:2304.14891 [hep-ex]].

 \square Previous studies of η_c decays have been performed by BaBar with the η_c produced in two-photon interactions.

B^+ decay modes

 \Box In this analysis we study the $K_S^0 K \pi$ system in the B^+ decays

 $B^+ \to (K^0_S K^- \pi^+) K^+, \qquad B^+ \to (K^0_S K^+ \pi^-) K^+, \quad +c.c.$

 \square A total of 340 \times 10^6 candidates. Signals selected by TMVA analyses using 10 variables.

 \Box Reconstructed a total of 74150 $B^+ \to K^0_S K^- \pi^+ K^+$ and 58460 $B^+ \to K^0_S K^+ \pi^- K^+$ events.

$K^0_S K \pi$ mass spectra

 \Box The $K_S^0 K \pi$ mass spectra show rich production of charmonium resonances.

 \Box Structures at threshold. $D^0 \to K^0_S K^- \pi^+, \eta_c, J/\psi, \chi_{c1}, \eta_c(2S)$ signals.

 $B^+ \to K^0_S K^- \pi^+ K^+ \qquad \qquad B^+ \to K^0_S K^+ \pi^- K^+$

(two combinations per event)

Measurement of the charmonium parameters

□ The charmonium modeled by a simple Breit-Wigner convolved with the experimental resolutions. □ Binned fits to the $K_S^0 K^{\pm} \pi^{\mp}$ mass spectra.

 \Box Fitted charmonium parameters and inverse-variance-weighted averages of the two B^+ decays.

Resonance.	mass (MeV)	width (MeV)	Yield
η_c	$2985.01 \pm 0.17 \pm 0.89$	$29.7 \pm 0.5 \pm 0.2$	34910 ± 283
J/ψ	$-0.54 \pm 0.08 \pm 0.45$	0.0929 (fixed)	6696 ± 106
$\eta_{c}(2S)$	$3637.90 \pm 0.54 \pm 1.40$	$10.77 \pm 1.62 \pm 1.08$	3680 ± 128
χ_{c1}	$3509.84 \pm 0.69 \pm 0.64$	0.88 (fixed)	2760 ± 86

First observation of $B^+ \to \chi_{c0} (\to K^+ K^-) K_S^0 \pi^+$

 \Box The $B^+ \to \chi_{c0} K$ decay is expected to be zero in simple factorization models (M. Neubert and B. Stech, Adv. Ser. Direct. High Energy Phys. 15, 294 (1998)).

 \Box We perform a fit to the K^+K^- , where the χ_c are described by relativistic Breit-Wigner functions, free parameters for the χ_{c0} and fixed to PDG for the χ_{c2} .

 \Box An incoherent fit returns shifted χ_{c0} parameters (≈ 5 MeV) with respect to PDG.

 \square We allow interference of the χ_{c0} with background and obtain

Final state	p-value (%)	Res.	mass	width	Yield	PDG mass	PDG width
Total	27.9	χ_{c0}	3413.6 ± 1.3	12.8 ± 2.8	1924 ± 89	3414.71 ± 0.3	10.5 ± 0.8
		χ_{c2}	3556.17 (fixed)	2.0 (fixed)	186 ± 33	3556.17 ± 0.07	2.0 ± 0.11
		Candidates/(4 MeV)	$ \begin{array}{c} $	To Ban χ_{cl} B s J J J J J J J J J J	tal - ckground - j idebands - 3.6		

 \Box The interference phase is found to be $\phi = -1.290 \pm 0.073$. χ_{c2} significance: 4.6 σ .

First measurements of branching fractions

 \Box We use the PDG η_c and J/ψ branching fractions

$$\mathcal{B}(B^+ \to \eta_c K^+) \cdot \mathcal{B}(\eta_c \to K^0_S K^{\pm} \pi^{\mp}) = 2.7 \pm 0.6 \times 10^{-5},$$
$$\mathcal{B}(B^+ \to J/\psi K^+) \cdot \mathcal{B}(J/\psi \to K^0_S K^{\pm} \pi^{\mp}) = 5.71 \pm 0.52 \times 10^{-6}.$$

to convert relative to absolute branching fractions.

 \Box Measured branching fractions.

Final state	$\mathcal{B} (\times 10^{-5})$		
	η_c as reference		
$B^+ \to K^0 K^+ K^- \pi^+$	$32.28 \pm 0.33 \pm 1.97 \pm 7.17$		
$B^+ \to K^0 K^+ K^+ \pi^-$	$26.56 \pm 0.31 \ \pm 0.68 \ \pm 5.90$		
$B^+ \to \chi_{c0} K^0 \pi^+$	$1.38 \pm 0.07 \pm 0.11 \pm 0.32$		
$B^+ \to \chi_{c2} K^0 \pi^+$	$0.87 \pm 0.20 \pm 0.08 \pm 0.20$		
	J/ψ as reference		
$B^+ \to K^0 K^+ K^- \pi^+$	$34.01 \pm 0.74 \ \pm 0.91 \ \pm 3.10$		
$B^+ \to K^0 K^+ K^+ \pi^-$	$28.01 \pm 0.68 \ \pm 1.35 \ \pm 2.55$		
$B^+ \to \chi_{c0} K^0 \pi^+$	$1.45 \pm 0.08 \pm 0.11 \pm 0.16$		
$B^+ \rightarrow \chi_{c2} K^0 \pi^+$	$0.92 \pm 0.21 \pm 0.08 \pm 0.10$		

 \Box The first uncertainty is statistical, the second systematic, the third is due to the PDG uncertainty on the $B \to \eta_c K$ or $B \to J/\psi K$ branching fraction.

The η_c Dalitz plot from $B^+ \to K^0_S K^+ K^- \pi^+$ and $B^+ \to K^0_S K^+ K^+ \pi^-$

□ Dominated by uniform constructive horizontal and vertical bands due to $K_0^*(1430)$. □ G-parity relates the final states $\bar{K}_0^* K$ and $K_0^* \bar{K}$ and for the I=0 $J^{PC} = 0^{-+} \eta_c$ resonance. □ G-parity is even and therefore the $\bar{K}_0^* K$ and $K_0^* \bar{K}$ bands interfere constructively. □ Removed strong $\bar{D^0} \to K^+ \pi^-$ in $B^+ \to K_S^0 K^+ K^+ \pi^-$.

 \square We perform two η_c Dalitz plot analyses:

(a) Quasi Model Independent (QMI) measurement of the $K\pi$ S-wave .

(b) Isobar model: all the resonances are described by Breit-Wigner functions.

Measurement of the $K\pi$ S-wave

 \Box The $K\pi$ invariant-mass spectrum is divided into 37 equally-spaced mass intervals 50MeV wide, and two new fit parameters are added for each interval: the amplitude and phase of the $K\pi$ S-wave.

 \Box The $K\pi$ S-wave amplitude in bin j is written as

$$A_{S-wave}^{j} = \frac{1}{\sqrt{2}} \left(a_{j}^{K\pi}(m) e^{i\phi_{j}^{K\pi}(m)} + a_{j}^{K^{0}\pi}(m) e^{i\phi_{j}^{K^{0}\pi}(m)} \right),$$

 \Box Plot the $K\pi$ S-wave for $B^+ \to K^0_S K^+ K^- \pi^+$ (black) and $B^+ \to K^0_S K^+ K^+ \pi^-$ (red) data

 \Box Perform the inverse-variance-weighted average and plot the Argand diagram.

 \Box Anticlockwise motion. Large loop: $K_0^*(1430)$, smaller loop: $K_0^*(1950)$.

Results from the QMI analysis \Box Fit projections for $B^+ \to \overline{K^0_S K^+ K^- \pi^+}$ data Candidates/(20 MeV) Candidates/(20 MeV) Candidates/(20 MeV) LHCb (c) 300 LHCb 9 fb⁻¹ (a) LHCb 9 fb⁻¹ **9** f (b) Total *B* sidebands η_c sidebands 400 400 200 200 200 100 $\frac{2}{m(K^-\pi^+)} \frac{2.5}{[\text{GeV}]}$ $2.5 m(K_{\rm S}^0 K^-)$ [GeV] 1.5 $2 m(K_{s}^{0}\pi^{+})$ [GeV] 1.5 1.5 2 1 1

 $\Box K^*(892)$ signal entirely due to background.

 \square Inverse-variance-weighted averages from the QMI Dalitz-plot analysis of the η_c decay.

Final state	Fraction $[\%]$	Phase [rad]
$(K\pi)_S K$	$114.4 \pm 1.8 \pm 4.6$	0.
$a_0(1450)\pi$	$1.4\pm0.2\pm0.4$	$2.31 \pm 0.06 \pm 0.09$
$K_{2}^{*}(1430)K$	$17.1 \pm 0.6 \pm 0.7$	$4.32 \pm 0.02 \pm 0.08$
$a_2(1320)\pi$	$0.7\pm0.1\pm0.4$	$4.20 \pm 0.08 \pm 0.26$
$a_{0}(980)\pi$	$10.5\pm0.4\pm0.4$	$-2.97 \pm 0.02 \pm 0.03$
$a_0(1700)\pi$	$1.0\pm0.1\pm0.1$	$2.04 \pm 0.06 \pm 0.12$
$K_{2}^{*}(1980)K$	$3.5\pm0.3\pm0.9$	$0.06 \pm 0.04 \pm 0.07$
$a_2(1750)\pi$	$0.2\pm0.1\pm0.1$	$-3.69 \pm 0.15 \pm 0.16$
Sum	$148.8 \pm 2.0 \pm 4.8$	

η_c Dalitz plot analysis using the isobar model

 \Box All the resonances are described by relativistic Breit-Wigner functions.

 \Box After having included all possible known resonances, we introduce an additional contribution, described by a BW pole, with free parameters and label the contribution as $\kappa(2600)$.

 \Box We obtain the following measurement of the resonances parameters.

□ Significances estimated using Wilks' theorem.

Resonance	Mass (MeV)	$\Gamma ({ m MeV})$	$\Delta(2log\mathcal{L})$	Significance $(n\sigma)$
$K_0^*(1430)$	$1493 \pm 4 \pm 7$	$215 \pm 7 \pm 4$		
$K_0^*(1950)$	$1980 \pm 14 \pm 19$	$229\pm26\pm16$	316	17.8
$a_0(1700)$	$1736 \pm 10 \pm 12$	$134\pm17\pm61$	161	12.7
$\kappa(2600)$	$2662\pm59\pm201$	$480\pm47\pm72$	1338	36.6

 $\Box \text{ The fit requires the presence of } a_0(1700)^- \to K_S^0 K^-, \text{ first observed by BaBar} \\ (a_0(1700)^- \to \eta \pi^-) \text{ in the Dalitz plot analysis of } \eta_c \to \eta \pi^+ \pi^- \text{ (J. P. Lees et al., Phys. Rev. D 104, 072002} \\ (2021), [arXiv: 2106.05157])$

 \Box We test the presence of the low mass $\kappa(800)$ with parameters fixed to PDG values. We obtain a $\Delta(2log\mathcal{L})=6.6$ for the difference of two parameters. This corresponds to a significance of 1.8σ .

η_c isobar model average results

 \Box Inverse-variance-weighted averages from $B^+ \to K^0_S K^+ K^- \pi^+$ and $B^+ \to K^0_S K^+ K^+ \pi^-$ data.

Final state	Fraction $(\%)$	Phase
$K_0^*(1430)\bar{K}$	$33.4 \pm 0.9 \pm 2.0$	0.
$a_0(980)^{-}\pi^+$	$5.1\pm0.5\pm0.8$	$-3.38 \pm 0.06 \pm 0.08$
$K_{2}^{*}(1420)\bar{K}$	$14.6\pm0.7\pm0.8$	$3.54 \pm 0.02 \pm 0.07$
$a_2(1310)^{-}\pi^+$	$1.1\pm0.1\pm0.2$	$-2.89 \pm 0.08 \pm 0.18$
$K_0^*(1950)ar{K}$	$3.7\pm0.3\pm0.2$	$-0.44 \pm 0.04 \pm 0.45$
$a_0(1700)^{-}\pi^+$	$1.1\pm0.2\pm0.2$	$1.05 \pm 0.06 \pm 0.15$
$a_0(1450)^{-}\pi^+$	$2.6\pm0.3\pm0.5$	$-4.82 \pm 0.06 \pm 0.13$
$a_2(1750)^{-}\pi^+$	$0.3\pm0.1\pm0.1$	$2.33 \pm 0.12 \pm 0.11$
$\kappa(2600)ar{K}$	$61.8 \pm 2.4 \pm 5.4$	$-0.37 \pm 0.03 \pm 0.09$
Sum	$123.7 \pm 2.7 \pm 4.7$	

 \Box Fit projections.

Consistency test with the results from QMI analysis

 \Box We test the consistency between the $K\pi S$ -wave model obtained from the QMI analysis with that obtained from the isobar model analysis.

 \Box In the isobar model the $K\pi \ S$ -wave is described in terms of $K_0^*(1430) + K_0^*(1950) + \kappa(2600)$.

 \Box We perform a χ^2 fit to the QMI $K\pi \mathcal{S}$ -wave amplitude and phase using the model:

 $f(m) = c_1 B W_{K^*(1430)}(m) e^{i\phi_1} + c_2 B W_{K^*(1950)}(m) e^{i\phi_2} + c_3 B W_{\kappa(2600)}(m) e^{i\phi_3}$

 \Box All the resonances have parameters fixed to the results from the isobar model analysis.

 \Box Similar to the $f_0(980)/\sigma$ interference observed in the $\pi\pi$ final state.

First Dalitz plot analysis of $\eta_c(2S)$ in $B^+ \to K^0_S K^+ K^- \pi^+$

 $\Box \eta_c(2S)$ Dalitz plot and fit results

Final state	$\operatorname{Fraction}(\%)$	\mathbf{Phase}
$K_0^*(1430)K$	$25.5 \pm 3.3 \pm 2.3$	0.
$K_{2}^{*}(1430)K$	$24.5 \pm 3.3 \pm 2.5$	$3.10 \pm 0.11 \pm 0.06$
$K_0^*(1950)K$	$3.7\pm1.3\pm0.6$	$-0.82 \pm 0.17 \pm 0.09$
$a_0(1700)^{-}\pi^+$	$1.7\pm1.1\pm0.3$	$1.22 \pm 0.32 \pm 0.19$
$a_0(1450)^{-}\pi^+$	$7.8\pm1.9\pm0.9$	$1.86 \pm 0.14 \pm 0.11$
$a_2(1750)^{-}\pi^+$	$4.9\pm1.4\pm0.6$	$-1.75 \pm 0.15 \pm 0.04$
$\kappa(2600)K$	$124.2 \pm 9.0 \pm 5.4$	$-0.91 \pm 0.10 \pm 0.07$
Sum	192.3 ± 10.9	

 \Box Similar to that from the η_c with larger phase space.

 \Box We only use the isobar model Dalitz plot analysis with all the resonances parameters fixed to that obtained in the η_c analysis.

 \Box Fit projections

 \Box Fit to the background subtracted $K\pi$ mass spectra using two relativistic Breit-Wigner functions to describe the $K^*(892)$ and $K_2^*(1430)$ resonances. Summed over the two B^+ decay modes.

 \Box The fractional $K^*(892)$ and $K_2^*(1430)$ contributions are converted into $\chi_{c1} \to K^* \bar{K}$ branching fractions by multiplying by the known χ_{c1} branching fraction

$$\mathcal{B}(\chi_{c1} \to \bar{K^0}K^+\pi^-) = (7.0 \pm 0.6) \times 10^{-3},$$

and correcting for unseen K^* decay modes.

 \Box Inverse-variance-weighted branching fractions averages.

Decay mode	Fraction	Branching fraction $(\times 10^{-3})$
$\mathcal{B}(\chi_{c1} \to K^* (892)^0 \bar{K}^0)$	$0.099 \pm 0.012 \pm 0.004$	$1.04 \pm 0.13 \pm 0.04 \pm 0.09$
$\mathcal{B}(\chi_{c1} \to K_2^*(1430)^0 \bar{K}^0)$	$0.111 \pm 0.015 \pm 0.005$	$1.17 \pm 0.16 \pm 0.05 \pm 0.10$
$\mathcal{B}(\chi_{c1} \to K^{*}(892)^{+}K^{-})$	$0.112 \pm 0.016 \pm 0.013$	$1.18 \pm 0.17 \pm 0.14 \pm 0.10$
$\mathcal{B}(\chi_{c1} \to K_2^*(1430)^+ K^-)$	$0.143 \pm 0.018 \pm 0.006$	$1.61 \pm 0.19 \pm 0.19 \pm 0.14$

Summary

 \Box In this analysis we study the B^+ decay to $K_S^0 K K \pi$ and obtain the following results.

- (a) Precise measurements of the η_c and $\eta_c(2S)$ parameters
- (b) High statistics and high purity Dalitz plot analysis of η_c decay using the QMI and isobar model approaches.
- (c) Improved measurement of the $K\pi$ S-wave from the η_c decay described by an alternative model.
- (d) Established the existence of the $K_0^*(1950)$ and $a_0(1700)$ resonances.
- (e) First Dalitz plot analysis of $\eta_c(2S) \to K_S^0 K^{\pm} \pi^{\mp}$.
- (f) Improved measurements of the $\chi_{c1} \to K^* K$ branching fractions.
- (g) First measurement of the $B^+ \to K^0_S K^- \pi^+ K^+$ and $B^+ \to K^0_S K^+ \pi^- K^+$ branching fractions.
- (h) Measurement of the B^+ to η_c , J/ψ , $\eta_c(2S)$ and χ_{c1} branching fractions.
- (i) First observation of the decay $B^+ \to \chi_{c0} K_S^0 \pi^+$