Misura di dose durante il trattamento adroterapico

Radiotherapy & Hadrontherapy The physics of Hadrontherapy Monitoring the Dose Summary & conclusions

V.Patera Universita' di Roma "La Sapienza" e INFN (LNF)

Introduction to hadrontherapy

Goal

- Deliver a high radiation dose to the target area to kill all tumour cells.
- Spare out healthy tissue and organs at risk.
- Tumour conformal dose distribution.

Radiation type

- Conventional therapy: electrons, photons
- Hadron therapy: protons, light ions
- $-$ More exotic: neutrons, pions

Courtesy GSI

Tumor treatment in Europe

Percentage of cure \sim 45% (EU report 2000)

Main problems:

- Anatomy does not permit surgery
- RadioResistant tumours or close to organs at risk (OAR)

Hadrontherapy can be a viable solution to increase cure to 60-65%: allows for better localised dose distribution

POTENTIAL PATIENTS

X-ray therapy (5 – 20 MeV) Hungary **20'000 pts/year every 106** Beleium Sweden **inhabitants** Italy Feance Denmark **Protontherapy** United Kingdom Germany -inland **10% of X-ray patients** Netherlands uxembourg CzechReñ **2'000 pts/year every 10 M** Austria Spain Slovenia Portugal Greece Estonia **Carbon ions for** Poland Slovakia **radioresistant tumours** Ireland Malta **10% of X-ray patients** styia Lithuania **Cyprus 2'000 pts/year every 10 M**

By TERA foundation EU Report : LINAC needed per 10⁶ inhabitants

Radiotherapy

- Part of multi-disciplinary approach to cancer care
- Useful for 50-60% of all cancer patients (also together surgery)
- Can be given for cure or palliation Therapy window
- Mainly used for locoregional treatment
- Benefits and sideeffects are usually limited to the area(s) being treated

DNA is the most important molecule that can be changed by radiation

Studies have shown that most radiation-induced DNA damage is normally repaired by the body

Packed in the 5-10 μ m radius of the cell nucleus

The photon based RT

The photon (and e-) beams are the most common in RT. They are not so expensive, small, and reliable.

It's a pity that the energy release shape is not so suitable to release dose in a deep tumor (remember the exponentian attenuation law..?). But….

Penetrazione in acqua di differenti specie di radiazioni ionizzanti: fasci di fotoni ed elettroni per radioterapia, $60Co$

State of the art photon Radiotherapy: IMRT

The use of sophisticated imaging (CT), the superposition of several beams, computed optimization and multi-leaves collimators makes the miracle!!

Treatment Planning System (TPS)

- Based on the CT data-> geometrical model of the treatment region included density info
- Meet target dose prescription and avoid OAR
- Optimization of machine and collimators parameters to achieved the target dose distribution
- Huge use of MC calculation

Hadrontherapy vs Photon RT

The highest dose released at the end of the track, sparing the normal tissue

• Length of track function of 5.5 the beam energy 5.0 • Dose decrease rapidly after Einheiten] 4.5 the BP. 4.0 Irelative • Accurate conformal dose to 3.5 tumour with Spread Out 3.0 Dosis Bragg Peak 2.5 physikalische 2.0 100 $1, 5$ RELATIVE DOSE (%) 80

..............

10

25

20

DEPTH (cm)

30

60

40

20

........................

Single Field Dose comparison

Comparison 12C vs IMRT

C-12, 2 fields

IMRT, 9 fields

Courtesy of M.Durante, GSI

Comparison Comparison Comparison of Treatment Plans: C-ions vs. protons protons Protons vs 12C

No absolute best: (if you exclude that the proton facilities are less expensive..). For example…

- $12C$ has better peak to plateau dose ratio
- \cdot 12C has less multiple scattering

C-ions (GSI) H-ions (CapeTown, SA)

Is 12C the best projectile? Cell Survival

Relative Biological Effectiveness

Due to the high LET (Linear Energy Transfer ~ De/Dx), the carbon ions is much better at killing the tumour cells wuth respect to the X rays for a given dose released >high RBE

$$
S = \frac{N_{col}}{N_{seed}} = e^{-(\alpha D + \beta D^2)}
$$

Photons eavy Ions Survival D_{τ} $RBE=2.4$ D_{low} 0.1 $RBE=2.0$ 0.01 12 $\overline{\mathbf{2}}$ 8 10 14 Dose [Gy] $RBE = \frac{D_r}{D}$ Isoeffect

 α [Gy⁻¹]: initial slope β [Gy-²]: bending of curve α / β [Gy]: dose, at which contribution from linear term = contribution from quad. term

Comparison of dose values at Isoeffect-Level!

Why same dose induces different survival?

The high ionization density of ¹²C induces easily DSB in DNA helix

BUT …. 12C fragments on the path to tumour

Dose release in healthy tissues with possible long term side effects, in particular in treatment of young patients \rightarrow must be carefully taken into account in the Treatment Planning System

- Production of fragments with higher range vs primary ions
- \vee Production of fragment with different direction vs primary ions

 Mitigation and attenuation of the primary beam Different biological effectiveness of the

fragments wrt ¹²^C

Exp. Data (points) from Haettner et al, Rad. Prot. Dos. 2006 Simulation: A. Mairani PhD Thesis, 2007, Nuovo Cimento C, 31, 2008

Scattered Frag.s production by 12C beam

The secondary fragments broad the lateral dose profile and go beyond the tumor region.

Angular distribution

Energy distribution

FLUKA benchmark against thick target data

Exp. Data (points) from Haettner et al, Rad. Prot. Dos. 2006 Simulation: A. Mairani PhD Thesis, 2007, PMB *to be published*

The FIRST collaboration

- INFN: Cagliari,LNF,LNS,Milano,Roma3,Torino: C.Agodi, G.Battistoni, M.Carpinelli, G.A.P.Cirrone, G.Cuttone, M.De Napoli, B.Golosio, Y.Hannan, E.Iarocci, F.Iazzi, R.Introzzi, A.Mairani, V.Monaco, M.C.Morone,P.Oliva, A.Paoloni, V.Patera, L.Piersanti, N.Randazzo, F.Romano, R.Sacchi, P.Sala, A.Sarti, A.Sciubba, C.Sfienti, V.Sipala, E.Spiriti
- DSM/IRFU/SPhN CEA Saclay, IN2P3 Caen, Strasbourg, Lyon: M.D.Salsac, A.Boudard, J.E. Ducret, M. Labalme, F. Haas, C.Ray
- GSI: M.Durante, D.Schardt, R.Pleskac, T.Aumann, C.Scheidenberger, A.Kelic, M.V.Ricciardi, K.Boretzky, M.Heil, H.Simon, M.Winkler
- ESA: P.Nieminem, G.Santin
- CERN: T.Bohlen

FIRST stands for: Fragmentation of Ions Relevants for Space and Therapy \rightarrow S371 is the GSI label

INFN & hadrontherapy CATANA @LNS

Proton 80MeV beam

Treatment of the choroidal and iris Melanoma. In Italy about300 new cases/year

Centro di AdroTerapia ed Applicazioni Nucleari Avanzate

INFN & hadrontherapy: CNAO @Pavia

MI,TO,LNF,LNL,FE

Particelle: Range del fascio: Risoluzione del range: 0.1 g/cm² Precisione di dose: **Dimensione fascio:**

p (60 - 250 MeV), C^{6+} (120 - 400 MeV/u) $1 \rightarrow 27$ g/cm² INFN $± 2.5%$ $4 \rightarrow 10$ mm FWHM Accuratezza sulla dimensione: 0.2 mm Posizionamento fascio (passo): 1_{mm} Accuratezza posizionamento: 0.05 mm Dimensione del campo: $2 \times 2 \rightarrow 20 \times 20$ cm²

stituto Nazionale di Fisica Nucleare Patient Statistics (for the facilities in operation end of 2009):

thereof

Total for all facilities (in operation and out of operation):

2054 He 1100 pions 7151 C-ions 873 other ions 67097 protons 78275 Grand Total

7151 C-ions 56854 protons

Monitoring the dose

• Why is so crucial to monitor the dose in hadrontherapy ? Is like firing with machine-gun or using a precision rifle..

Effect of density changes in the target volume

Spec's of hadrontherapy monitor

- Measure shape and absolute value of dose to check the agreement between the planned target volume and the actually irradiated volume
- The measurement should be done during the treatment (inbeam)
- Must rely on a given secondaries generated by the beam that comes out from the patient, to spot the position of the dose release
- Must be able to deal with the other secondaries that come out that acts like background

baseline dose monitoring in HT : PET

Baseline for monitor in HT is PET : autoactivation by p & ^{12}C beam that creates β ⁺ emitters.

- Isotopes of short lifetime ^{11}C (20 min), ^{15}O (2) min), 10C (20 s) wrt conventional PET (hours)
- Low activity in comparison to conventional PET need quite long acquisition time (few minutes)
- Metabolic wash-out, the β^+ emitters are blurred by the patient metabolism
- No direct space correlation between $β$ ⁺ activity and dose release (but can be reliable computed by MC)

Correlation between β^+ activity and dose

Projectiles & target Frojectiles & Target Target fragmentation

K. Parodi et al, IJROBP 2007

Planned dose

Post-radiation PET/CT @ MGH

Average Activity **K. Parodi et al, IJROBP 2007**

279, W. Enghardt et al.: Nucl. Instr. Meth. A525 (2

Treatment plan

Predicted β ⁺activity

Measured β ⁺activity

A dedicate PET: the DO-PET project 288 300 70 700 80 700 80

 \sim \sim \sim Scintillating crystals LYSO:Ce from Hilger PS‐PMT H8500 from Hamamatsu Photonics K.K.:

- \cdot Homogeneous cylindrical phantoms of PMMA at center of FoV:
- \cdot Spread-out Bragg Peak (SOBP, 10.8) mm plateau width) irradiation;
- \cdot Delivered dose: 30 Gy;
- \cdot Irradiation Time: ~60 s;

F.Attanasi @ IFA 2010

- Final collimator: 25 mm \varnothing ;
- Distance between detectors: 14 cm.
- PET acquisition time: 20 min.
- F_0V : $42 \times 42 \times 42$ yoxels
- $1.076 \times 1.076 \times 1.076$ voxel dimension.

The DO-PET prototype | [N $\frac{1}{2}$

PMMA phantoms with 0.5 cm

Air_Gap at different depth;

OFF beam PET : long acquisition time

tuto Nazionale di Fisica Nucleare

. Phantom irradiations:

- Bragg peak dose: 30 Gy
- Irradiation time: 18 s;
- \cdot Beam cross sention: 2.5 cm \varnothing :
- Acquisition time: 20 min;

Going further: in-beam TOF-PET

Improving the reconstruction and reducing background using the time difference between the Time Of Flights of the 2 collinear γ

- Improvement in the S/B ratio
- Better accuracy with less statistic
- Easier events reconstruction
- O(200ps) time resolution on 511 keV γ needed

3. Towards a real-time in-vivo dosimetry The goal: real time monitoring by ToF-PET

- the accelerator • On line feedback to
- delivered • From the activity monitored on line during the treatment to the istantaneous
- R&D on crystals, PMTs, electronics to go for σ_{TOF} ~100ps (3 cm space res)
	- Negligible background

P. Crespo et al., Phys. Med. Biol. 52 (2007) 6795

Background or Signal?

G4

Balance of promptly emitted particles outside the target:

 (-10^{10}) Incident protons: 1.0 0.3 (3.109) γ-**rays: Neutrons:** 0.09 (9.10^8) Protons: 0.001 $(1.10⁷)$ $2 \cdot 10^{-5}$ (2.10⁵) α -particles:

The $p^{12}C$ beams generate a huge amount of secondaries.. expecially prompt single γs. and neutrons in the 1-10 MeV range. Can be used to track the beam inside the patient

The nuclear models inside MC (FLUKA&G4) not yet able to fully describe this physics huge development effort ongoing

Prompt γs @GANIL

- 73 AMeV carbon beam
- γ peak correlated with BP
- MC one order of magnitude off (more..)
- Neutrons background (TOF rejection ?)

Possible prompt γ monitoring: Gamma camera

- Large flux, maybe enough stats for in-beam
- Collimation like Anger camera in SPECT
- Well known technique, robust, compact

More sophisticated… Compton Camera

$$
\cos \varphi = 1 - m_0 c^2 \left(\frac{1}{E_{\gamma}} - \frac{1}{E_{\gamma}} \right)
$$

Based on γ Compton scattering: known E_v, measure E_{γ'}, r_γ, r_{γ'} → obtain f. But…

- E_y not fixed \rightarrow continuous γ spectra
- γ' must be completely absorbed in the second detector

Diving in the future… the charged signal!

- Low energy p emitted also near BP (Fermi motion). Enough energy to be useful?
- Best space resolution for large angle $emission \rightarrow low$ statistic
- MC highly unreliable, probing the very tail of the angular distribution of secondary

Envision WP2 2011 Report

Coming back to reality: flux measurement…

RM1, LNF,LNS : Measurement of β^* , γ , ${\sf p}$, ${\sf n}$ & charged sec fluxes induced by the 12C 80AMeV @LNS on PMMA phantom

NAI counter $\rightarrow \beta^+$; LYSO counter $\rightarrow \gamma,n$; Drift $Chamber \rightarrow Charged$; PLASTIC counter \rightarrow low angle frags

Work in progress…

This measurement campaign is a prerequisite to the design phase of HT monitor device

Summary & conclusions

- Hadrontherapy is an established therapy with increasing spread in the word
- There is a common need for reliable, precise and compact monitor devices
- INFN has a huge activity in the field, spread out in several sites on accelerators, software (Treatment Planning System) and monitor devices (also in collaboration with companies like IBA)
- There is plenty of work to be done…

Spare slides

The Pair Camera

Tasks:

- Simulation with Geant4
- Optimize setup:
- Target and detector material ⋗
- Target and detector dimensions
- **Combination with Compton Camera**
- Accuracy of source localisation, spatial resolution

Known problems from pairproduction camera in astronomy:

- Recoil of nuclei: uncalculable changes of angles
- Coulomb scattering of electron and positron

FRAGMENTATION OF CARBON IONS

The secondary fragments, especially the lighter ones such H and He, broad the lateral dose profile. Effect gets more and more important approaching, and going beyond, the Bragg Peak i.e. the tumor region

The ALADIN setup @GSI

- The choice of GSI has 2 main motivations:
- "Terapeutical" beam of ${}^{12}C$ @ 200-400 MeV/u available
- Existing setup designed for higher E and Z fragments: Dipole magnet, Large Volume TPC, TOF Wall, low angle Neutron detector.
- New detectors added to optimize the Interaction Region for this measure: Vertex tracker, Start Counter, Beam Monitor, Proton Tagger

Radiotherapy and secondary cancers

Cancer survivors represent about 3.5% of US population

Second primary malignancies in this highrisk group accounts for about 16% of all cancers

Three possible causes:

Continuing lifestyle Genetic predisposition

Treatment of the primary cancer

Assessment is difficult because of lack of controls

Prostate and cervix cancer: surgery is an alternative

Hodgkin's lymphoma: risk of breast cancer very high

Radiation-induced secondary cancers are mostly carcinomas, but a sarcomas in
heavily irradiated sites are also observed

Brenner *et al., Cancer* (2000)

Pediatric Pediatric patients patients

Hall, *IJROBP* 2006

Work in progress

Increased need for Radiotherapy

-one cancer out of two needs RXT

- Population increase: 2020 : 8 Billions in the world (300/100.000) : 24 millions cancer/year 12 millions RXT: 24.000 linacs (1/500 patients)
- Population ageing: 2010-2030

people above 65yx2 people above 80yx3 (surgery Δ)

• Metastatic chronic phase: RXT 7

Oligo meta : brain - lung - liver etc ...