

L. Ludovici **INFN/Roma**

Pomeriggi Tematici Roma, 12 maggio 2011

Atmospheric neutrinos

$$\mathsf{R}(\mathsf{E}) = \frac{(v_{\mu} + v_{\mu})}{(v_{e} + v_{e})} \xrightarrow[\mathsf{E}]{<\approx 1 \text{GeV}} 2$$

18 maggio 2010

v_{μ}/v_{e} Ratio (of Ratios)

Prima indicazione del deficit di vµ dal rapporto vµ/ve (Kamiokande)

Indicazioni contrastanti negli anni '80

18 maggio 2010

"The data are consistent with two-flavor $\nu_{\mu \rightarrow} \nu_{\tau}$ oscillations with $\sin 2\theta > 0.82$ and $5 \cdot 10^{-4} < \Delta m^2 < 6 \cdot 10^{-3} \text{ eV}^2$ at the 90% confidence level."

Phys.Rev.Lett. 81 (1998) 1562 (3500+ citations)

18 maggio 2010

Neutrino Physics and oscillation

1930 v existence postulated 1934 v interaction theory and name 1938 Solar v flux calculation 1946 Idea of v chlorine detector 1956 v interactions observed 1957 Idea of v oscillation 1958 Left-handed v 1962 $2v's, v_{\mu}, v_{e}$ 1968 Solar neutrino deficit 1973 v NC interactions observed 1975 τ and the third v 1986 Solar deficit again, atmospheric(?) 1987 v from SN1987A 1989 3 light neutrino families 1991 Solar deficit again 1998 Atmospheric v oscillation 2002 Solar v oscillation confirmed 2005 Atmospheric v oscillation confirmed

Pauli Fermi Bethe Pontecorvo Reines & Cowan Pontecorvo Goldhaber Lederman, Schwartz & Steinberger Davis Gargamelle Perl Kamiokande Kamiokande, IMB LEP Collaborations Gallex, SAGE Super-Kamiokande SNO, KamLand K2K

CHARM

(1976-1983)

CHARM2

(1983-93)

CHORUS

(1991-1998)

12/05/2011

Lucio Ludovici

9

(1999-2004)

K2K

OPERA

(2007)

12/05/2011

Lucio Ludovici

11

(2010)

T2K

$$\mid
u_i
angle = \sum_{lpha = e, \mu, au} {\sf U}_{lpha i} \mid
u_lpha
angle$$

12

12/05/2011

Lucio Ludovici

13

Probabilità di oscillazione

$$\mathcal{P}_{\substack{(-)\\\nu_{\alpha}\to\nu_{\beta}}}(L,E) = \sum_{k} |\mathbf{U}_{\alpha\mathbf{k}}|^{2} |\mathbf{U}_{\beta\mathbf{k}}|^{2} + 2\Re \sum_{k>j} \mathbf{W}_{kj}^{\alpha\beta} {}^{(*)}e^{-i\frac{\Delta m_{kj}^{2}}{2E}}$$

 $\mathrm{W}_{kj}^{lphaeta} = \overline{\mathrm{U}_{lpha\mathbf{k}}^*\mathrm{U}_{eta\mathbf{k}}\mathrm{U}_{lpha\mathbf{j}}}\overline{\mathrm{U}_{eta\mathbf{j}}^*}$

14

$$\mathcal{P}_{\substack{(-)\\\nu_{\alpha}\to\nu_{\beta}}}(L,E) = \sum_{k} |\mathbf{U}_{\alpha k}|^{2} |\mathbf{U}_{\beta k}|^{2} + 2\sum_{k>j} \Re\{\mathbf{W}_{kj}^{\alpha\beta}\} \cos\left(\frac{\Delta m_{kj}^{2}L}{2E}\right)$$
$$\stackrel{+}{\underset{(-)}{+}} 2\sum_{k>j} \Im\{\mathbf{W}_{kj}^{\alpha\beta}\} \sin\left(\frac{\Delta m_{kj}^{2}L}{2E}\right)$$

$$\mathcal{P}_{\substack{(-)\\\nu_{\alpha}\to\nu_{\beta}}}(L,E) = \delta_{\alpha\beta} + 4\sum_{k>j} \Re\{\mathbf{W}_{kj}^{\alpha\beta}\} \sin^{2}\left(\frac{\Delta m_{kj}^{2}L}{4E}\right)$$
$$+ 2\sum_{k>j} \Im\{\mathbf{W}_{kj}^{\alpha\beta}\} \sin\left(\frac{\Delta m_{kj}^{2}L}{2E}\right)$$

11 maggio 2010

Probabilità per due famiglie

$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \mathbf{U} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix} \qquad \mathbf{U} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \qquad \Delta m^2 = m_2^2 - m_1^2$$

$$\mathcal{P}_{\nu_{\alpha} \to \nu_{\beta}} = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

Importante storicamente e nella pratica degli esperimenti di oscillazione Approssimazione delle formule generali valida in molti casi

Formule approssimate

Esperimenti a distanze terrestri, con $\Delta m_{12}L/E <<1$, sono descritti solo da 3 parametri: θ_{23} , Δm_{12} , θ_{13} e da formule simili a quelle per 2 famiglie

 $\mathsf{P}(\nu_{e} \rightarrow \nu_{\mu}) \cong \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \sin^{2}\Delta_{23} = \sin^{2}2\theta_{\mu e} \sin^{2}\Delta_{23}$

 $\mathsf{P}(\nu_{\mu} \rightarrow \nu_{\tau}) \cong \mathsf{cos}^{4} \theta_{13} \sin^{2} 2\theta_{23} \sin^{2} \Delta_{23} = \sin^{2} 2\theta_{\mu\tau} \sin^{2} \Delta_{23}$

 $\mathsf{P}(\nu_{e} \rightarrow \nu_{\tau}) \cong \cos^{2}\theta_{23} \sin^{2}2\theta_{13} \sin^{2}\Delta_{23} = \sin^{2}2\theta_{e\tau} \sin^{2}\Delta_{23}$

 $\mathsf{P}(\mathsf{v}_{\mu} \rightarrow \mathsf{v}_{\mu}) \cong 1 - (\sin^{2}2\theta_{\mu\tau} + \sin^{2}2\theta_{\mu e}) \sin^{2}\Delta_{23}$

 $\mathsf{P}(v_e \rightarrow v_e) \cong 1 - \sin^2 2\theta_{13} \sin^2 \Delta_{23}$

Angoli di mixing efficaci:

 $\sin^2 2\theta_{\mu e} = \sin^2 \theta_{23} \sin^2 2\theta_{13} \cong 0.5 \sin^2 2\theta_{13}$

 $\sin^2 2\theta_{\mu\tau} = \cos^4 \theta_{13} \sin^2 2\theta_{23} \cong \sin^2 2\theta_{23}$

 $sin^2 2\theta_{e\tau} = cos^2 \theta_{23} sin^2 2\theta_{13} \cong 0.5 sin^2 2\theta_{13}$

SK, K2K, MINOS $sin^{2}(2\theta_{23})>0.92 (90\%CL)$ $\Delta m^{2}_{23}=2.43\pm0.13 \times 10^{-3} \text{ eV}^{2}$

KAMLAND, SNO $sin^{2}(2\theta_{12})=0.87\pm0.03$ $\Delta m^{2}_{12}=7.59\pm0.20 \text{ x}10^{-5} \text{ eV}^{2}$

$$\begin{split} & \text{Violazione di CP leptonica} \\ & \mathcal{A}_{\alpha\beta}^{CP} = \frac{\mathcal{P}_{\nu_{\alpha} \to \nu_{\beta}} - \mathcal{P}_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}}}{\mathcal{P}_{\nu_{\alpha} \to \nu_{\beta}} + \mathcal{P}_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}}} \\ & \mathcal{A}_{\alpha\beta}^{CP} = \frac{2\sum_{k>j}\Im\{W_{kj}^{\alpha\beta}\}\sin\left(\frac{\Delta m_{kj}^2L}{2E}\right)}{\delta_{\alpha\beta} - 4\sum_{k>j}\Re\{W_{kj}^{\alpha\beta}\}\sin^2\left(\frac{\Delta m_{kj}^2L}{4E}\right)} \\ & \text{Invariante di Jarskolg} \qquad J_{\alpha\beta;kj} = \Im\{U_{\alpha k}^* U_{\beta k} U_{\alpha j} U_{\beta j}^*\} = \pm \mathbf{J} \end{split}$$

Analogo all'area dei triangoli unitari in CKM: $J^{CKM} \approx 3 \cdot 10^{-5}$

$$\mathbf{J} = \frac{1}{4}\sin 2\theta_{12}\sin 2\theta_{23}\cos^2\theta_{13}\sin\theta_{13}\sin\delta \approx 0.23\sin\theta_{13}\sin\delta$$

La possibilità di misurare CPL è legata al valore di θ_{13}

11 maggio 2010

Conferma agli acceleratori delle oscillazioni degli atmosferici

$\Delta m^2 L/E$

Long Baseline

11 maggio 2010

Experimental Strategy

12/05/2011

Far/Near Ratio

Analysis Strategy

v interaction MC

near detector simulation

Measure $\#\nu$, $E\nu^{rec}$

12/05/2011

Oscillation Fit sin²2 θ , Δm^2

Lucio Ludovici

Measure $\Phi_{ND}(Ev), v$ interact. properties

Far/Near Ratio:

- Hadroproduction data
- Beam MC
- v interact. properties

Expected $\#\nu$, $E\nu^{rec}$ w/o oscillation

K2K Conceptual Layout

Signature of neutrino oscillation 1. Reduction of v_{μ} events 2. Distortion of v_{μ} energy spectrum

12/05/2011

Lucio Ludovici

Noutrino Energy (GeV)

Disappearance & Shape

ABSOLUTE DEFICIT

ENERGY SPECTRUM DISTORTION

Allowed regions from v_{μ} disappearance and distortion of E_{v} spectrum are consistents

12/05/2011

Lucio Ludovici

27

Minos (Fermilab→Soudan)

12/05/2011

Lucio Ludovici

28

12/05/2011

Lucio Ludovici

Impact Parameter $c\tau \sim 87 \mu m$ Track length $c\tau\gamma \sim 1mm$ 29

The CNGS beam

<en></en>	17.7 GeV		
L	730 km		
$(Nv_e + Nv_e)/Nv_{\mu}$	0.87%		
Nv_{μ}/Nv_{μ}	2.1%		
Prompt v_{τ}	Negligible		

Expected Performance (Proposal)

Assumptions: Maximal mixing, 22.5x1019p.o.t. (5years @ 4.5x1019p.o.t./year)

12/05/2011

Lucio Ludovici

30

OPERA Hybrid Detector

TARGETS Target tracker (scintillators) Lead/Emulsion Bricks (75,000x2) Target mass~1.25 kt

MUON SPECTROMETERS Iron + RPCs Precision Tracker: 6 drift tubes planes

12/05/2011

Phys. Lett. B691 (2010) 138

Event number 9234119599, 22 August 2009, 19:27 (UTC)

Probability of backg. fluctuation (only 1prong) 4.5% (1.8%)

Statistical significance 2.01σ (2.36 σ)

T2K (Tokai to Kamioka) experiment

Goals

1. v_{e} appearance (θ_{13} "discovery") 2. v_{μ} disappearance (θ_{23} , Δm_{23}^{2} precise measurement)

12/05/2011

Off-Axis neutrino Beams BNL proposal E889 http://minos.phy.bnl.gov/nwg/papers/E889 Target Horns Decay Pipe θ - 14 mrad $E_{v} = \frac{m_{\pi}^{2} - m_{\mu}^{2}}{2 (E_{\pi} - p_{\pi} \cos \theta)} \qquad \Phi_{v} = \frac{1}{4\pi L^{2}} \frac{m_{\pi}^{2}}{(E_{\pi} - p_{\pi} \cos \theta)^{2}}$

Much higher flux than old-style NBB. Strong cut-off of HE tail: reduced NC π° bckg. Reduced v_e contamination. Tune energy to maximise sensitivity: $\Delta = 1.27 \cdot \Delta m^2 (eV^2) \cdot L(Km) / E(GeV)$ Beam energy almost fixed by geometry 12/05/2011

 $E_{\pi} \gg m_{\pi}$, and $\theta << 1$

 $\frac{m_{\pi^{2}} - m_{\mu^{2}}}{m_{\pi^{2}} (1 + \gamma_{\pi^{2}} \theta^{2})} E_{\pi} = \frac{1}{\pi L^{2}} \left(\frac{E_{\pi}}{m_{\pi}} \right)^{2} \frac{1}{(1 + \gamma_{\pi^{2}} \theta^{2})^{2}}$

Lucio Ludovici

20 E_ (GeV)

T2K Near Detector: ND280

ND280

Off-Axis (ND280)

suite of fine grain detectors/tracker in 0.2 T magnetic field (UA1/NOMAD magnet)

measurements of

- CC v_µ events (normalization, E_v-spectrum)
- NC π⁰, CC v_e events (backgrounds to v_e appearance)
- general neutrino interaction properties

On-axis (INGRID)

scintillator-iron detectors

measurement of beam direction and profile

ND280 events

T2K θ_{13} sensitivity $P(v_{\mu} \rightarrow v_{e}) \approx \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \sin^{2}(1.27 \Delta m_{23}^{2}L/E)$

12/05/2011

Lucio Luaovici

T2K v_{μ} disappearance $P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - \sin^2 2\theta_{23} \sin^2(1.27 \Delta m_{23}^2 L/E)$

Sensitivity: $\delta(\sin^2 2\theta_{23}) \sim 0.01$, $\delta(\Delta m_{23}^2) < 1 \times 10^{-4} [eV^2]$

12/05/2011

Lucio Ludovici

T2K Preliminary Results

Jan-June 2010 (2010a): 3.23E19 pot (w.r.t. 1.45E20 already on tape)

	From ±500 µs	Data	MC		PC		
	window around beam spills		No oscillation	Oscillation $\Delta m^2 = 2.4 \times 10^{-3} (eV^2)$ $\sin^2 2\theta_{23} = 1.0$	(12µs window)		
	Fully-Contained	33	54.5	24.6	0.0094		
Consistent with oscillation parameters measured by SK, K2K,MINOS	Fiducial Volume, E _{vis} > 30MeV	23	36.8	16.7	0.0011		
	Single-ring μ-like (P _μ >200MeV/c)	8 (8)	24.6 (24.5 ±3.9)	7.2 (7.1 ±1.3)	-		
	Single-ring e-like (P _e >100MeV/c)	2 (2)	1.9 (1.5 ±0.7)	1.5 (1.3 ±0.6)	-		
	Multi-ring	13	10.2	8.0	-		

observed v_e candidates surviving all cuts: 1 # expected background events ($\theta_{13}=0$): 0.30±0.07

Neutrino from the Sun

The Standard Solar Model (SSM) predicts the power radiated by the Sun from fusion reactions in its core

98.5% of the Sun power comes from the pp reaction: 4 p→ $4\text{He}+2e^++2v_e+26.7 \text{ MeV}$ $L_{\odot} = 3.9 \ 10^{26} \text{ Js}^{-1}$ $D = 1.5 \ 10^{11} \text{ m}$ $Q = 26.7 \text{ MeV} = 4.3 \ 10^{-12} \text{ J}$

Spettro dei neutrini solari

 $v_e + d \rightarrow p + p + e^-$ (CC)

 $v_x + d \rightarrow n + p + v_x$ (NC)

Misure del flusso dei neutrini solari

Sudbury Neutrino Observatory (SNO)

1000 tonnes D₂O

12 m Diameter Acrylic Vessel

1700 tonnes Inner Buffer H₂O

9500 PMTs, 60% coverage

5300 tonnes Outer Shield H₂O

Urylon Liner and Radon Seal

12/05/2011

Neutrino interactions in SNO

- ★ Measure the total ⁸B flux

SNO: total flux as expected from SSM

- NC rate as expected from SSM (all neutrinos)
- CC rate (only v_e) is 0.31 SSM
- ES rate is consistent with Super-Kamiokande and oscillation into $v_{\mu}v_{\tau}$

Oscillation data overview

Decades of experimental and theoretical efforts !

That's all folks ?!

"There is nothing new to be discovered in physics now. All that remains is more and more precise measurement."

Kelvin, c. 1900