Risultati di Fisica del Modello Standard e Ricerca del/i Bosone/i di Higgs a LHC

Stefano Giagu Sapienza Università di Roma e INFN Sezione di Roma

Pomeriggi tematici della Sezione INFN di Roma - 16 Giugno, 2011

Fisica alla scala del TeV

Priorità del programma di fisica dei collider di ultima generazione:

chiarire definitivamente il settore di Higgs (EWSB)

cercare segnali di nuova fisica alla scala del TeV (Gerarchia)

Altrettanto importanti:

- fisica del sapore di alta precisione (Tevatron/LHCb/Bfactory/superB (+ qualche contributo da parte di ATLAS/CMS))
- diagrammi di fase di QCD (Alice)

Come si cerca l'Higgs e/o effetti di Nuova Fisica

Due strategie complementari:

- ricerca di effetti diretti:
 - chiara interpretazione, misura delle proprietà del processo osservato
 - non si può osservare ciò che non si può produrre direttamente ...
 - ricerche guidate dalle previsioni teoriche ... minore sensibilità ad effetti inaspettati

- ricerca di effetti indiretti su processi del Modello Standard misurati con alta precisione:
 - effetti virtuali → sensibilità a più alte scale di energia
 - interpretazione fisica dell'osservazione ambigua, necessità di una successiva verifica diretta
 - by product:
 - comprensione dei processi SM
- ottimizzazione delle prestazioni dei rivelatori prerequisiti fondamentali per le ricerche dirette

- Limiti diretti Higgs Modello Standard:
- LEP: M_H > 114.4 GeV/c² @95% CL
- Tevatron: *M_H* ∉ [158, 173] GeV/c² @95% CL

150

 $M_{H} = 96^{+30}_{-25}$ GeV

*M*_H < 170 GeV@95% CL

2

0

50

100

3

1σ

300

M_⊬ [GeV]

---- Fit excluding theory errors

250

200

Indice

- Alcune misure di fisica del Modello Standard a LHC (nell'ottica della ricerca del bosone di Higgs ...)
 - fisica dei Jet
 - fotoni
 - fisica del W e dello Z
- La ricerca diretta dell'Higgs
 - produzione e decadimento: SM (e BSM)
 - primi risultati delle ricerche effettuate a LHC
 - prospettive a breve termine ...

I "tool" sperimentali

- rivelatori general purpose
- design ottimizzato per le dure condizioni imposte da LHC

i dettagli nella presentazione di Marcella ...

http://atlas.ch

Il campione di dati

Total Integrated Luminosity [pb⁻¹

World record, Tevatron (4.1 10³²) surpassed

2011

Il viaggio verso la scoperta dell'Higgs

Incertezza sulla scala di energia 3-5% for $p_T > 20$ GeV

- Same clustering algorithm used at trigger and analysis level.
- No isolation requirement at trigger level.
- Trigger fully efficient in probed phase-space.
- Simple event selection:
- At least one reconstructed p-p interaction vertex.
- At least one reconstructed photon with E_↑ of at least 21 GeV and $|\eta| < 1.45$.
- oton reconstruction and event selection

 e^+

) er la ricerca dell'Higgs in 2γ tta della PDF gluonica struzione/identificazione di

CMS

15 ISO [GeV]

conversioni

0.5

Photons reconstructed through energy deposited in ECAL

- The presence of material in front of ECAL causes photons to convert in e⁺e⁻ pairs.
- CMS solenoidal magnetic field lead the energy to be spread along ϕ .
- Energy spread in ϕ direction is clustered.
- Same clustering algorithm used at trigger and analysis level.
- No isolation requirement at trigger level.
- Trigger fully efficient in probed phase-space.

Simple event selection:

WeZ

Uno strumento fondamentale:

- segnature pulite, permettono misure di precisione
- disponibili predizioni teoriche accurate: generatori@NLO (POWHEG, MC@NLO), calcoli@NNLO (FEWZ, RESBOS, DYNNLO)
- distribuzioni differenziali sensibili alle PDF
- permettono di capire e calibrare il rivelatore (Tag&Probe, risoluzioni, scale di energia e impulso)
- costituiscono fondo per la maggior parte delle analisi di ricerca

incertezze dominate dalla luminosità
 si cancella nei rapporti W/Z e W⁺/W⁻

usando le misure di CMS e ATLAS di W⁺/W⁻ constraint sulle PDF d,u,s con miglioramento delle incertezze >40% nel range $10^{-3} < x < 10^{-2}$

$Z \rightarrow \tau \tau$ come benchmark per h $\rightarrow \tau \tau$, H⁺ $\rightarrow \tau v$

CMS: fit simultaneo alla sezione d'urto misurata nei diversi canali e efficienza di identificazione del tau per migliorare la risoluzione ATLAS: forma dello spettro in massa invariante usando tecniche di MC embedding: tau inseriti all'interno di eventi reali $Z \rightarrow \mu\mu$ (alta statistica)

W e Z + altro: WW/WZ/W γ /Z γ

W e Z + altro: W/Z+jets

- Background difficili e presenti inquasi tutte le analisi: top, higgs, SUSY, esotici
- challenge: comprensione del fondo
- risultati in eccellente accordo con MC basati su ME e con le predizioni NLO
- come aspettato cattivo accordo con Pythia per \geq 1 Jet

W+jets e spettro in massa invariante jet-jet

Recente risultato di CDF:

- anomalia nello spettro di massa invariante dei 2 jet in eventi W+jets
- confermato a più alta statistica (significanza > 4σ), non confermato da DO

Ricerca del Bosone di Higgs

II Modello Standard vuole un Higgs leggero ATLAS e CMS possono verificare tale predizione nell'immediato futuro

- Higgs di massa intermedia
- Higgs di alta massa
- Higgs di bassa massa

statistica richiesta

5

Produzione dell'Higgs @LHC

Produzione associata: sezione d'urto piccola, usata al Tevatron, e recentemente tornata interessante anche a LHC nel contesto di jet ad alto boost

Modi di decadimento dell'Higgs

- bb: fondo da QCD enorme, fino a poco tempo fa non utilizzabile a LHC, recente revival di interesse nel contesto dei boosted jets:

- analisi ristretta a produzione associata con bosoni di alto p_{T} e back-to-back
- solo una piccola frazione della sezione d'urto totale (5% per p_T>200 GeV), ma background altamente ridotto e accettanza cinematica massima
- ricostruzione jet e b-tag ottimizzati per jet veloci e vicini spazialmente
- per un higgs di 120 GeV con 10 fb-1 sensibilità simile a quella del canale $h\!\rightarrow\!\gamma\gamma$

Alta massa:

- h \rightarrow ZZ e WW: tutti i canali di decadimento per W/Z

Massa Intermedia

- WW \rightarrow 2I+MET: molto sensibile, meno preciso
- ZZ→4I: molto preciso, meno sensibile

Da bassa massa a massa intermedia:

- γγ: molto pulito, piccolo BR, canale più sensibile
- ττ: richiede l'utilizzo di caratteristiche peculiari nella produzione (ex. VBF) per ridurre il fondo

- WW, ZZ

canale llbb

BSM Higgs

Fisica oltre il Modello Standard può avere effetti sostanziali nei pattern di produzione e decadimento dell'Higgs → importante esplorare tutte le possibilità in termini di stati finali e masse, indipendentemente da ciò che il MS preferisce ...

Esempio 1: produzione e decadimento di Higgs BSM nei canali tipici dell'higgs SM

- SM con 4th generazione di quark pesanti
- MSSM, 2HDM ...
- effetti su Produzione e/o Decadimenti

Esempio 2: produzione e decadimento di stati Higgs BSM non presenti nello SM

- H⁺ in decadimenti del top
- $H^{++} \rightarrow I^{+}I^{+}$

Esempio 3: decadimenti esotici di bosoni di Higgs tipo SM • Stati Hidden Valley gradi h hv Mixing

Displaced decays

....potrebbe anche essere qualche cosa che sembra un Higgs ma non c'entra nulla con l'Higgs

19

Higgs con massa intermedia: $h \rightarrow WW^{(*)} \rightarrow IvIv$

- Counting experiment
- La perdita della risoluzione in massa invariante dell'Higgs compensata dalla alta rate di eventi
- Premile canale di rice rca più sensibile nell'intervallo di massa dell'Higgs di ~130-190 GeV/c²
 Pata H-WW (m_µ=170 GeV)
 WV, di-boson (WZ/ZZ/Wγ), W/Z+Jets, DY, top, QCD
 Vijets Contra preselezione:
 2 leptoni isolati di alto pT [QCD, W+Jets]
 veto in eventi con bassa M_{II} per sopprimere risonanze a bassa massa invariante
 Z veto (|M_{II}-M_Z| > 10 GeV) [DY]
 Tura pregia trasversa mancante (MET) [DY]
 Tura pregia trasversa mancante (MET) [DY]
 Tura pregia trasversa mancante (MET) [DY]

m_T [GeV]

• Ottimizzazione:

CMS: <u>analisi multivariata</u> (BDT) + + *E*amaitisi (att-based)²di⊲controllo

ATLAS: analisi esclusiva in bin di molteplicità dei jet

0/1-jet: massima purezza (no top BG), ottimizzazione basata su gluon-fusion

2-jet: BG da top dominante, ottimizzazione basata su VBF (tag jet in emisferi opposti, rapidity gap)

h→WW→lvlv: Stima dei Fondi

Cruciale in tutte le analisi ad un collider adronico: ogni fondo stimato o almeno controllato con tecniche data-driven

- fondi principali stimati in regioni di controllo (dove non si aspetta segnale), e poi estrapolate nella regione del segnale
- contaminazioni incrociate dei differenti fondi e/o possibili leakage del segnale nelle varie regioni di controllo tenuti in conto

Esempio ATLAS:

- Fondo WW dalle side-band in M_{II}:

Higgs di bassa massa \rightarrow alta M_{II} dominata dal fondo WW Higgs di alta massa \rightarrow bassa M_{II} dominata dal fondo WW

- Top: campioni arricchiti in top tramite b-tagging per stima efficienza criteri di veto su jet

- W+jets:

cinematica controllata su campioni arricchiti di fondo tramite tagli loose su lepton-ID probabilità di riscotruire un leptone fake da campioni ortogonali nel trigger di jet

- Z+jets: fondo stimato usando il metodo ABCD nel piano M_{II} - MET

m_{II} [GeV]

 $h \rightarrow WW \rightarrow |v|v$: primi risultati a $\sqrt{\Delta \eta_{\ell\ell}^2 + \Delta \phi_{\ell\ell}^2}$

• discriminante globale: ATLAS massa trasversa ($m_T = \sqrt{(E_T^{\ell\ell} + E_T^{miss})^2 - (P_T^{\ell\ell} + P_T^{miss})^2}$), CMS BDT output

Events / 0.08

h→WW→lvlv: Primi risultati a LHC

Con ~35 pb⁻¹: a 160 GeV/c² ATLAS e CMS sono a circa un fattore 2 dal Modello Standard

Un eventuale bosone di Higgs in uno scenario di 4th generazione, è escluso al 95% CL nell'intervallo di massa tra ~140 e ~210 GeV/c²

h→ZZ*→4 leptoni

- Canale golden plated: segnatura pulitissima, fondo quasi trascurabile, robusto verso il pileup
- ma ... il ridotto BR leptonico dello Z penalizza fortemente la rate di eventi → necessita di statistica
- Fondo: principale ZZ→4I, altri fondi (Z+bjets/top) soppressi dalle richieste di isolamento leptonico
- Selezione:
 - due coppie di leptoni di carica opposta e stesso sapore con alto impulso trasverso (p_T>20 GeV)
 - consistenti con l'essere prodotte da decadimenti del bosone Z
 - leptoni isolato e con parametro di impatto rispetto al vertice primario consistente con zero

sensibilità per M_h~200 GeV confrontabile con quella di altri canali grazie alla segnatura pulita
 background ~free → per un pò il limite migliorerà come ~1/L_{int}

Higgs con alta massa: $h \rightarrow ZZ \rightarrow II(qq/vv)$

- Topologie molto meno pulite rispetto al canale 4I, ma un fattore ~27 di guadagno nel BR
- Maggiore sensibilità ad alte masse quando il fondo dominante da W/Z+jets diventa piccolo
 - Fondi:
 - Z+jets, ttbar and W+jets: distribuzioni da MC e normalizzazioni da regioni di controllo nei dati
 - Eanda da OCD multi-iet trascurabile (controllato con tecniche data-driven, relaxed lepton-ID)

nessun eccesso osservato

anche: h→WW→lvqq

- Complementa h→WW→II+MET nella regione di alta massa dove il fondo da W+jets è ridotto
- Canale con migliore sensibilità per M_h>500-600 GeV/c2, quando la larghezza naturale dell'Higgs rende ininfluente l'impatto della risoluzione in massa invariante

Selezione:

- 1 leptone (e,), p_T>30 GeV
- MET > 30 GeV
- 2 o 3 jets con $p_T>30$ GeV
- b-tag veto

Data	713	
BG	674 ±46	
Higgs	2.1±0.7	

con 35 pb⁻¹ limiti sup. sulla sezione d'urto: ~10÷20 x σ_{SM}

Higgs con bassa massa: $h \rightarrow \gamma \gamma$

• Fondi:

irriducibili: γγ

- riducibili: γ-Jet, Jet-Jet
 - handles: risoluzione in massa invariante, indentificazione fotoni, isolamento
- Richieste sperimentali:
 - eccellente risoluzione in massa invariante
 - ricostruzione precisa del vertice primario
 - puntamento del fotone, ricostruzione conversioni

Lo SM lo preferisce leggero (M_h<158 GeV)

- pure se con BR minuscolo (~0.2%) h→γγ fornisce la maggior rate di eventi a bassa massa M_h
 - ex. ATLAS@7 TeV (efficienze di trigger&ricostruzione incluse)
 - h→γγ @ 120 GeV: aspettati 25 ev/fb⁻¹
 - h→WW→II+MET @ 170 GeV: aspettati 20 ev/fb⁻¹

Possible scenario futuro: CMS con ~8 fb⁻¹

$h \rightarrow \gamma \gamma$: risultati su i primi dati 2011

Mettendo tutto insieme

combinazione delle combinazioni presto disponibile ...

SUSY Higgs: MSSM h/H/A→TT

• Settore di Higgs nel MSSM: 5 bosoni h, H, A, H⁺, H⁻, governato da 2 parameteri M_A, tan β a livello Born

- Sezione d'urto di produzione O(σ_z) per alti valori di tan β
 - canale più sensibile: decadimento in tau: $h \rightarrow \tau \tau \rightarrow I \tau_{had} 3v$, buon BR, basso fondo
- Fondi: $Z \rightarrow \tau \tau$, top, W+jets, $Z \rightarrow II$, QCD, multijets
- Richieste sperimentali:
 - ricostruzione efficiente e pura di tau adronici (per discriminare il BG di QCD)
 - ricostruzione precisa della cinematica dell evento (per discriminare il BG da Z→ττ, e per ricostruire con precisione la massa dell'Higgs)

• CMS:

- ricostruzione dettagliata del particle flow dei decadimenti adronici del tau
- fit simultaneo a sezione d'urto Z→TT e efficienza di indentificazione del tau per massimizzare la risoluzione

MSSM $h \rightarrow \tau \tau$: Risultati

CMS

Process	$\mu \tau_h$	$e \tau_h$	еµ
$Z \rightarrow \tau \tau$	329 ± 77	190 ± 44	88 ± 5
$t\bar{t}$	6 ± 3	2.6 ± 1.3	7.1 ± 1.3
$Z \to \ell \ell$, jet $\to \tau_h$	6.4 ± 2.4	15 ± 6.2	
$Z \to \ell \ell, \ell \to \tau_h$	13.3 ± 3.6	119 ± 28	-
$W \to \ell \nu$	54.9 ± 4.8	30.6 ± 3.1	
$W \to \tau_\ell \nu$	14.7 ± 1.3	7.0 ± 0.7	3.9 ± 1.2
QCD	132 ± 14	181 ± 23	-
WW/WZ/ZZ	1.6 ± 0.8	0.8 ± 0.4	3.0 ± 0.4
Total	558 ± 79	546 ± 57	102 ± 5
Observed	540	517	101
Signal Efficiency ($m_A = 120 \text{ GeV}/c^2$)	0.0253	0.0156	0.00561

Esclusioni nel piano (M_A ,tan β)

Conclusioni e Prospettive

2xCDF Preliminary Projection

ATLAS/CMS: ~3 fb⁻¹ 2011, ~10 fb⁻¹ fine 2012 CDF/D0: ~10 fb⁻¹ fine 2011

se c'è non può scappare ...