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o 150 nm CMOS technology
o SPAD arrays available for characterization 

in single- and dual-layer configuration
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o DCR mitigation through vertical interconnection of two SPAD layers to produce a 
coincidence signal
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ASAP110LF chip – a technology characterization platform

single SPADs

100 um pitch, 
passive quenching, 

1 bit, FF=67%
(32x26)

50 um pitch, 
passive quenching, 

1 bit, FF=48%
(16x52)

100 um pitch, 
passive quenching, 

10 bit, FF=64%
(32x22)

100 um pitch, 
active quenching, 

1 bit, FF=67%
(7x10)

Mini-SiPMs (4x4), 
170 um x 105 um, 
FF=41% (5x12)

10b/20b TDC and 
ring oscillator
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ASAP110LF chip – Array 1

o The avalanche is quenched by a passive network made of 
transistors.

o An enable network has been implemented.
o The monostable circuit modifies the duration of the detection

pulse to preset values (400 ps, 750 ps, 2 ns, transparent
mode).

o A two-stage memory is used.
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ASAP110LF chip – Array 2

o The avalanche is quenched by a passive network made of 
transistors.

o An enable network has been implemented.
o The monostable circuit modifies the duration of the detection

pulse to preset values (400 ps, 750 ps, 2 ns, transparent
mode).

o A two-stage memory is used.
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ASAP110LF chip – Array 3

o A front-end network similar to the previous ones is used here.
o A 10 bit asyncronous counter automatically counts the 

detection pulses. The count result is provided to the output 
pads through tristate inverters.

o A feedback logic circuit controls the counter operation, 
depending on specific input bits.
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ASAP110LF chip – Array 4

o The avalanche is quenched by means of an active network 
consisting of different monostable circuits.

o The hold-off time provided to the SPAD can be chosen between
four values (30 ns, 70ns, 110 ns, 150 ns), through dedicated
input bits.

o A memory circuit similar to the one employed in array 1 is
used here.
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o The SiPM contains 16 SPADs, 
arranged in a 4x4 array, and a 
processing circuit.

o The 16-bit input parallel counter 
provides in real time the number of 
simultaneously triggered SPADs.

o The count result is fed to the memory
elements through an auto-triggering
mechanism, which filters out spurious
glitches coming from the counter.

o A SOT logic has been implemented.
o A noise rejection feedback network 

(NRFN) has been designed to filter 
out individual dark pulses.

Mini-SiPM with parallel counter
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Mini-SiPM with parallel counter

Parallel counter, SOT, NRFN, 
memory cells
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ASAP110LF chip – Design issue

o Pads used to provide
VDD to the chip core do 
not contact the innermost
rail of the pad ring à
innermost rail is floating

o I/O pads consist of two
sections: the 
driver/receiver and the 
configuration section, 
which is supposed to be 
biased trhough the 
innermost pad ring rail
à I/O pads do not work
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Solution: Focused Ion Beam (FIB)

PAD OPENING
(INTERNAL RING)

o Connect floating rail to internal ring biased to VDD 
à pad opening already available on one side, 
passivation layer to be opened on the other

PASSIVATION LAYER (SiN)

METAL F 

OXIDE

METAL F 10.29 µm

ADDED INTERCONNECTON

(FLOATING RAIL) (INTERNAL RING)

FLOATING RAIL

PAD ALREADY 
OPENPAD TO BE 

OPENED

o Procedure already applied to three chips 
(two with two interconnections in two 
different points of the ring, one with a 
single interconnection) – it works!

o Cost: 350 Euro/interconnection + VAT
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ASAP110LF - VEX = 1.3 V - median = 0.26412 Hz/7m2
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Plans for future activity

o Interest in the activities of the ECFA DRD4 initiative

o Test structure characterization
o IV curves and breakdown voltage in elementary SPAD cells, also as a function of the 

temperature 

o dark count rate (DCR) as a function of the bias voltage and of the temperature, 
including correlated noise sources, i.e., after-pulsing and inter-cell electrical and optical 
cross-talk

o photo-detection efficiency

o displacement damage and total ionizing dose effects

o need for FIB (focused ion beam) procedure on 7 samples to recover from a design bug 
(about 3 kEuro, including VAT)
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o Design and characterization of small scale prototypes of monolithic SiPMs
including a few thousand of SPADs (targeting dual-readout calorimetry)

o elementary cell pitch of 15-20 um

o fully digital and mixed digital and analog approach considered to be explored – best 
compromise between fill factor and functional density

o on-sensor electronics to be equipped with event detection, thresholding and time 
stamping capabilities, together with the ability to follow the time evolution of the light 
pulses

o characterization in the lab with optical sources

o Design and characterization of a digital SiPM demonstrator

o tentatively including 8 SiPMs, each with around 1 mm2 area

o processing electronics to be integrated mostly in the inter-SiPM region to minimize the 
impact on the fill factor

o characterization in a beam test

Plans for future activity (continued)


