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o 150 nm CMOS technology

o SPAD arrays available for characterization
in single- and dual-layer configuration

L. Ratti, “SPADs and SiPMs in CMOS technology”



Dual layer SPAD arrays

o DCR mitigation through vertical interconnection of two SPAD layers to produce a
coincidence signal
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100 um pitch,
passive quenching,

1 bit, FF=67%
(32x26)

single SPADs

50 um pitch,

passive quenching,
1 bit, FF=48%

(16x52)
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100 um pitch,
passive quenching,

10 bit, FF=64%
(32x22)

10b/20b TDC and

ring oscillator

100 um pitch,
active quenching,

1 bit, FF=67%
(7x10)

Mini-SiPMs (4x4),
170 um x 105 um,
FF=41% (5x12)
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ASAPT10LF chip - Array 1

o The avalanche is quenched by a passive network made of
transistors.

o An enable network has been implemented.

o The monostable circuit modifies the duration of the detection

pulse to preset values (400 ps, 750 ps, 2 ns, transparent
mode).

o A two-stage memory is used.
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ASAPTI0OLF chip - Array 2

o The avalanche is quenched by a passive network made of
transistors.

o An enable network has been implemented.

o The monostable circuit modifies the duration of the detection

pulse to preset values (400 ps, 750 ps, 2 ns, transparent
mode).

o A two-stage memory is used.
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ASAP110LF chip - Array 3

o A front-end network similar to the previous ones is used here.

o A 10 bit asyncronous counter automatically counts the
detection pulses. The count result is provided to the output
pads through tristate inverters.

o A feedback logic circuit controls the counter operation,
depending on specific input bits.
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ASAP110LF chip - Array 4

o The avalanche is quenched by means of an active network
consisting of different monostable circuits. n
o The hold-off time provided to the SPAD can be chosen between [ 8

four values (30 ns, 70ns, 110 ns, 150 ns), through dedicated
input bits.

o A memory circuit similar to the one employed in array 1 is

used here.
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Mini-SiPM with parallel counter

The SiPM contains 16 SPADs,

arranged in a 4x4 array, and a
processing circuit.

The 16-bit input parallel counter
provides in real time the number of
simultaneously triggered SPAD:.

The count result is fed to the memory
elements through an auto-triggering

mechanism, which filters out spurious
glitches coming from the counter.

A SOT logic has been implemented.

A noise rejection feedback network
(NRFN) has been designed to filter
out individual dark pulses.
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Mini-SiPM with parallel counter
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ASAP110LF chip - Design issue

o Pads used to provide
VDD to the chip core do
not contact the innermost
rail of the pad ring >
innermost rail is floating

o 1/O pads consist of two
sections: the
driver/receiver and the
configuration section,
which is supposed to be
biased trhough the
innermost pad ring rail
- 1/O pads do not work




Solution: Focused lon Beam (FIB)

o Procedure already applied to three chips
(two with two interconnections in two
different points of the ring, one with a
single interconnection) - it works!

o Cost: 350 Euro/interconnection + VAT

o Connect floating rail to internal ring biased to YDD
- pad opening already available on one side,
passivation layer to be opened on the other
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DCR in 150nm and 110 nm CMOS SPADs

APIX2LF - V_, = 1.3 V - median = 1.6126 Hz/um®

ASAP110LF -V, = 1.3V - median = 0.26412 Hz/um®
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Plans for future activity

o Interest in the activities of the ECFA DRDA4 initiative

o Test structure characterization

o IV curves and breakdown voltage in elementary SPAD cells, also as a function of the
temperature

o dark count rate (DCR) as a function of the bias voltage and of the temperature,
including correlated noise sources, i.e., after-pulsing and inter-cell electrical and optical
cross-talk

o photo-detection efficiency
o displacement damage and total ionizing dose effects

o need for FIB (focused ion beam) procedure on 7 samples to recover from a design bug
(about 3 kEuro, including VAT)



Plans for future activity (continued)

o Design and characterization of small scale prototypes of monolithic SiPMs
including a few thousand of SPADs (targeting dual-readout calorimetry)

o elementary cell pitch of 15-20 um

o fully digital and mixed digital and analog approach considered to be explored - best
compromise between fill factor and functional density

o on-sensor electronics to be equipped with event detection, thresholding and time

stamping capabilities, together with the ability to follow the time evolution of the light
pulses

o characterization in the lab with optical sources
o Design and characterization of a digital SiPM demonstrator
o tentatively including 8 SiPMs, each with around 1 mm?2 area

o processing electronics to be integrated mostly in the inter-SiPM region to minimize the
impact on the fill factor

o characterization in a beam test



