RD_FCC: WP7 µ-RWELLS Status & program

M. Poli Lener on behalf of

Bo, Fe, LNF , To

programmi 2023-2024

RD-FCC $\rightarrow \mu\text{-RWELL}$ for tracking and muon system

The **IDEA detector** is a general purpose detector designed for experiments at future e^+e^- colliders (FCCee and CepC). **Pre-shower detector** and the Muon system are designed to be instrumented with μ -RWELL technology.

Detector requirements:

Tiles: 50x50 cm² with X-Y readout

Efficiency \geq 98%

Space resolution ≤ 100 µm (Pre-shower)

≤ 400 μm (Muon)

Instrumented Surface/FEE:

130 m², 520 det., 3×10^5 ch. (0.4 mm strip pitch) 1500 m²,1520 det., 5×10^6 ch. (1.2 mm strip pitch)

Mass production \rightarrow Technology Trasfer to Industry

FEE Cost reduction \rightarrow custom made ASIC (TIGER)

G. Bencivenni et al., The micro-Resistive WELL detector: a compact spark-protected single amplification-stage MPGD, 2015 JINST 10 P02008

The **µ-RWELL** is a **resistive MPGD** composed of two elements:

- Cathode
- μ-RWELL_PCB:

The µ-RWELL

- a WELL patterned kapton foil (w/Cu-layer on top) acting as amplification stage
- − a resisitive DLC layer^(*) w/ ρ ~10÷100 MΩ/□
- a standard readout PCB with pad/strip segmentation

^(*) DLC foils are currently provided by the Japan Company – BeSputter

The **"WELL"** acts as a **multiplication channel** for the ionization produced in the drift gas gap.

The **resistive stage** ensures the **spark amplitude quenching**. **Drawback:** capability to stand high particle fluxes reduced, but **largely recovered** with appropriate **grounding schemes** of the **resistive layer**

Status and plans 2023

Il programma 2023 può essere riassunto nei seguenti punti:

- Gli apparati Preshower & Muon sono stati implementati in GEANT4
- ✓ Finalizzazione del setup cosmici con elettronica TIGER/GEMROC + uRWELL (100x100 mm2) @ Fe
- Continuazione dello sviluppo del ML per cluster selection, track finding per una migliore separazione del segnale dal fondo al livello di hit/cluster
- Finalizzazione dell'analisi del TB 2022 (NA H8C, 4-20 ottobre 2022) con prototipi μ-RWELL con readout a strip 1D:
 100x100 mm2 area attiva & strip pitch 0.76 mm

 - 50x400 mm2 area attiva & strip pitch 0.4÷1.6 mm
- Costruzione di due layout μ-RWELL con readout a strip 2D (100x100mm2 area attiva) denominati:
 - TOP r/out strip pitch 0.76 mm
 - Charge Sharing r/out strip pitch 1.2 mm
- ✓ Test su fascio (NA H8C, 14-28 giugno 2023) dei layout 2D. Il test è stato effettuato con elettronica APV25 letta con SRS.
- Realizzazione prototipi 500x500 mm2: layout TOP r/o con strip pitch da 1.2 mm (diminuire la zona inefficiente), mentre per la CS r/o non riteniamo necessarie dell'ottimizzazioni sul readout. → Studio della stabilità di operazione 500x500 mm2 vs 100x100 mm2
 I prototipi potrebbero essere pronti a dic-23/gen-24. Seguiranno test @LNF con X-ray & cosmici e successivamente un TB.

done

9

9

Programma WP7 – 2023: detector in GEANT4

The barrel part of the muon system and preshower are fully described in the simulation and can be used in the analysis.

- the preshower is made of an almost cylindrical shape of 500 * 500 mm² of μRWELL chambers.
- the muon system has an octagon shape.

The $\mu RWELL$ materials have been successfully implemented into the full simulation with GEANT4 of IDEA

Simulation tuning with TB data

comparison data-simulation

Preliminary results presented at ACAT 2022 Final results presented at CHEP 2023

Cluster Reconstruction with M. L.

Preliminary studies

Aidainnova 4-year program

- 1. simulation of the μ -RWELL
- use of Machine Learning for cluster selection and track finding
- 3. track cleaning and refinement
- 4. application to IDEA framework

• Work in progress with real data from BESIII CGEM-IT

Cluster Reconstruction with M. L.

- Machine Learning to separate signal from noise at hit/cluster level (classification)
- Use TMVA, Boosted Decision Tree

cluster 1d Charge x, v + cluster 1d size x, y + fastest hit in cluster 1d x, y

Più sono stringenti questi tagli e maggiore è la frazione di rumore che viene tagliata. Se i tagli sono troppo stringenti allora viene tagliato anche del segnale.

Se invece si usano dei tagli più laschi si ha il 100% del segnale ma anche una buona percentuale di rumore

Programma WP7 – 2023: uRWELL + TIGER/GEMROC fee

- First working setup of TIGER/GEMROC readout installed and tested with a 10x10 cm2 microRWELL prototype by INFN TO and FE
- Noise level very low (~1 fC)
- Cosmic setup ready
- Delay in the delivery of the Frontend Boards (still using BESIII spares)

Distribution of thresholds of an entire chip (64 channels)

Programma WP7 – 2023: layout 2D

Studio della risoluzione spaziale ed efficienza di rivelatori 10x10 cm2 con lettura 2D X-Y (resistività del DLC, strip pitch ottimizzati con TB-2021&2022) con un TB @H8 SPS (Giugno 2023)

X coordinate on the TOP of the amplification stage

TB2023 (APV25) : 2D layouts

I risultati preliminari ottenuti con i due layout 2D r/out sono incoraggianti e le viste X-Y hanno mostrato un'uguale induzione del segnale.

TOP r/o:

- **NON DIVIDE** la carica totale lungo le 2 viste;
- La cluster size NON varia lungo la vista X (TOP), mentre ٠ aumenta sulla vista Y(spread del DLC);
- La risoluzione spaziale è digitale lungo X (Strip size ~ 1.5), mentre migliora lungo Y (spread del DLC)

Efficiency

Raggiunge il plateau d'efficienza ad HV più bassi;

La CS r/o:

- **DIVIDE** la carica totale lungo le 2 viste;
- La cluster size aumenta fino 4 strip (meccanismo del ٠ Charge Sharing funziona)
- La risoluzione spaziale migliora all'aumentare del HV (meccanismo del Charge sharing funziona \rightarrow Strip size > 2.5), raggiungendo i 150 um
- Raggiunge il plateau d'efficienza ad **HV più alti**;
- Il livello di efficienza > 95%;

Programma WP7 – 2024

Il programma 2024 prevede i seguenti punti:

- 1. Studio/ottimizzazione guadagno con differenti geometrie dello stadio di amplificazione (pitch well, diametro esterno/interno well) con prototipi 100x100 mm2. Questo studio è stato fatto con i rivelatori a GEM ma mai con le uRWELL \rightarrow well pitch da 140 µm a 90 µm con un aumento del guadagno di circa un fattore 2
- 2. Realizzazione di due prototipi da 500x500 mm2: la scelta del layout 2D si baserà sui risultati ottenuti nei precedenti test. **Seguiranno** test @LNF con X-ray & cosmici (con sistema tracciante) e successivamente un TB (sj).
- 3. 1 settimana di TB (SpS- H4 RD51/DRD1) uRWELL+TIGER/GEMROC (questo TB è differente rispetto a quelli con i prototipi 2D)
- 4. Continuazione dei test dei processi di produzione μRWELL presso la ELTOS /CERN e macchina DLC al CERN

WP7.3.2: Technology Transfer (flow chart)

*DLC Magnetron Sputtering machine co-funded by INFN- CSN1

WP7.3.2: Technology Transfer 2023

Step 0 – Detector PCB design @ LNF

- Step 1 CERN_INFN DLC sputtering machine @ CERN (+INFN)
 - <u>delivered</u> at the end of Oct. 2022
 - INFN crew tbd & trained

Step 2 – Producing readout PCB by ELTOS

pad/strip readout

- Step 3 DLC patterning by ELTOS
 - photo-resist \rightarrow patterning with BRUSHING-machine
- Step 4 DLC foil gluing on PCB by ELTOS
 - double 106-prepreg \rightarrow 2x50 μ m thick
 - PCB planarizing w/ screen printed epoxy \rightarrow single 106-prepreg
- Step 5 Top copper patterning by CERN (in future by ELTOS)
 - Holes image and HV connections by Cu etching

- Step 6 Amplification stage patterning by CERN
 - PI etching \rightarrow plating \rightarrow ampl-holes

Step 7 – Electrical cleaning and detector closing @ CERN

WP7.3.2: update on the CERN-INFN DLC machine

31st Oct. 2022 – Delivered 31st Oct. - 4th Nov. 2022 – Commissioning & test training 21st - 23rd Nov. 2022 – First DLC sputtering test

• Ar + N₂ doping

19th - 28th Jun. 2023 – Second DLC sputtering test (N2 doping percentage and pressure process scans) **Uniformity around 30%** along the vertical axis

The **resistivity** of the sample is being **monitored** to evaluate the **stability in time**.

The machine can sputter or co-sputter different materials (due to the presence of five targets), creating a layer-by-layer coating

0.03

0.04

Detectors in ECFA/DRD1

Further steps in the framework of the proposed **Detector Research and Development Collaboration on gaseous detector** (DRD1)

µ-RWELL:

Specific involvement in Work Package 1, related to large area muon systems, on:

Task 2: New resistive MPGD structures Task 6: Manufacturing

	Task	Perfomance goal	WGs	DRDT	Comments	Deri. Next 3 y
72	New resistive MPGD struc- tures	 Stable up to gains of O(10⁶) High gain in a single multiplication stage High rate capability (1 MHz/cm² and beyond) High tracking performance 	WG1, WG3 (3.1C, 3.2D), WG4, WG6, WG7 (7.1-5)	1.2	- High-rate DLC layout for micro- RWELL	 Design, construction and test of prototypes with new resistive materials Modelling and Simula- tion (signal induction) MPGD prototypes based on resistive elements for tracking
T6	Manufacturing	 Construction of large- area detectors at low cost Modular design Technology transfer strategy and training center for production 	WG3 (3.2E), WG6, WG8	1.3	 Optimization of the manufactur- ing procedure to minimize time- consuming or costly steps 	 Design and manufactur- ing of large-area detector Large-area DLC produc- tion CERN: MPGD based manufacturing capabilities and large-area modules (design and prototyping). Note: MPT Workshop

https://cernbox.cern.ch/pdf-viewer/public/BKQsu6oiuhPWDaa/RD_EXTENDED-PROPOSAL__DRD1.pdf?contextRouteName=files-public-link&contextRouteParams.driveAliasAndItem=public%2FBKQsu6oiuhPWDaa&items-per-page=100

RICHIESTE 2024

.NF:	
.1 – Produzione di N.2 50x50 cm2 2D readout (SJ) →DRD1	15 k€ (Consumo)
.2 – Produzione di N.4 10x10 cm2 pitch hole studies \rightarrow DRD1	6 k€ (Consumo)
.3 – Contatti con ELTOS/CERN per costruzione prototipi	5 k€ (Missioni)
.4 – Bombole pre-miscelate	2 k€ (Altri consumi)
.5 – Meccanica Cosmici con tracking e movimentazione per le 50x50	5 k€ (Consumo)
.6 – Test Beam 2024 (SJ) - 2 persone x 2 settimane	5 k€ (Missioni)
e:	
2.1 - Bombole pre-miscelate	1.5 k€ (Altri consumi)

2.1 - Bombole pre-miscelate 2.2 - Upgrade del setup cosmici per il TB

To:

3.3 - Heatsink external production

Fe/To:

4.1 Missione per TB

3 kE (FE) + 3 kE (TO) (SJ to approval of the TB)

3 k€ (SJ to quotation -Consumi)

1 k€ (Consumi)

Bo:

5.1 Bombole pre-miscelate 5.2 Test Beam 2024 (SJ)) - 3 persone x 2 settimane

2 k€ (Altri consumi) 7.5 k€ (Missioni)

spare slides

TB 2022 results: pitch study

Active area= 400x50 mm2 Pre-preg thickness= 50 um Strip width = 0.15 mm Strip pitch= 0.4-1.6 mm

(a) Cluster charge for different HV.

(b) Strip cluster size for different HV.

(c) Tracking efficiency for different HV.

TB 2022 results: layout 1D

Active area= 100x100 mm2 Pre-preg thickness= 20 um Strip width = 0.3 mm Strip pitch= 0.76 mm

Programma WP7 – 2023: detector in GEANT4 & ML

The barrel part of the muon system and preshower are fully described in the simulation and can be used in the analysis.

- the preshower is made of an almost cylindrical shape of 50 * 50 cm² of μRWELL chambers.
- the muon system has an octagon shape.
- The $\mu RWELL$ materials have been successfully implemented into the full simulation with GEANT4 of IDEA

Cluster reconstruction with ML

- simulation of the μ -RWELL resistive layer
- use of Machine Learning for cluster selection and track finding

Background

10 12 14 cluster 1d size, x

Earliest time

- track cleaning and refinement
- application to IDEA framework,

Cluster size

-8800 -8750 -8700

NO.7

2 0.6

0.012

0.5

0.3

0.2

0.01

0.006

0.002

Machine Learning to separate signal from noise at hit/cluster level (classification)

Use TMVA, Boosted Decision Tree cluster 1d Charge x, v + cluster 1d size x, y + fastest hit in cluster 1d x, y

TB2023 (APV25) : 2D layouts

I **risultati** preliminari ottenuti con i due layout 2D r/out sono **incoraggianti** e le viste X-Y hanno mostrato **un'uguale induzione del segnale**.

- La **TOP r/o** per costruzione **NON DIVIDE** la **carica totale** lungo le 2 viste:

- Raggiunge il plateau d'efficienza ad HV più bassi;
- Il livello di efficienza del 70 % è dovuto alle zone morte tra una strip e l'altra della coordinate Y;
- La risoluzione spaziale è digitale lungo X (Strip size ~ 1.5), mentre migliora lungo Y (dovuto allo spread del DLC)

- La **CS r/o** per costruzione **DIVIDE** la **carica totale** lungo le 2 viste:

- Raggiunge il plateau d'efficienza ad HV più alti;
- Il livello di efficienza > 95%;
- La risoluzione spaziale migliora all'aumentare del HV (meccanismo del Charge sharing funziona →Strip size > 2.5), raggiungendo i 150 um

