Recent theory developments on the physics of quark gluon plasma

Paolo Parotto, Università di Torino e INFN Torino 27 Febbraio 2024, Trento

Sesto Incontro Nazionale di Fisica Nucleare, INFN-TIFPA

Istituto Nazionale di Fisica Nucleare

The quark gluon plasma and the QCD phase diagram

What: deconfined and chirally restored medium

Where/when: early Universe down to $\sim 10^{-6} - 10^{-5}$ s after the Big Bang, AND iven sufficient energy, we can re-create it in relativistic heavy-ion collisions

Summarize our knowledge in the QCD phase diagram, with evidence from experiment + theory

- Hadron phase at low T/ μ , QGP at high T/ μ
- Crossover at zero density at $T\simeq 160\,{\rm MeV}$
- **Heavy-ion collisions** probe high T, varying density with energy scans
- Ordinary nuclear matter at $T \simeq 0$ and $\mu_B \simeq 922 \,\mathrm{MeV}$
- Critical point? Exotic phases?

Heavy-ion collisions: the "standard model"

Hydrodynamic simulations

The bulk evolution of the system is described by **relativistic viscous hydrodynamics**:

$$\partial_{\mu}T^{\mu\nu} = 0 \qquad \qquad \partial_{\mu}N^{\mu} = 0$$

 \rightarrow evolution from conservation equations

Properties of the medium is encoded in **transport coefficients**: shear viscosity η/s , bulk viscosity ζ/s , ...

Plumberg et al., 2312.07415

Borsanyi et al., PLB 730 (2014) 99

Input: initial conditions, equation of state (to close the set of equations) **Output:** after hadronization and an afterburner, particle spectra $\rightarrow R_{AA}, v_2, \dots$

Hydrodynamic simulations

Hydrodynamic simulations can reproduce experimental data and constrain the physics Bayesian analyses have been used to constrain e.g. the **equation of state** and the **viscosity**

Pratt et al., PRL 114 (2015) 202301

- Posterior equation of state in agreement with theroetical calculations
- QGP is the most perfect fluid know to humanity!

Hydrodynamic simulations: shear and bulk viscosity

Large scale Bayesian analysis on Au+Au RHIC data @ $\sqrt{s} = 200, 19.6, 7.7$ GeV

Very tight constraints on the chemical potential dependence of shear and bulk viscosity

Hydrodynamic simulations: B,Q,S conserved charges

Full trajectories of hydro cells until hadronization. We can have a picture of density fluctuations in all B, Q, S, as a function of T

Plumberg et al., 2312.07415

Results obtained with a 4D lattice QCD-based equation of state. Big challenge for eos, very large μ needed even at LHC, where $\langle \mu_i \rangle = 0$

Thermodynamic description of QCD

The thermodynamics of QCD is of fundamental interest, in itself and as input for a number of applications

• Transition line necessary for models, information on phase structure

$$\frac{T_c(\mu_B)}{T_c(\mu_B = 0)} = 1 + \kappa_2 \left(\frac{\mu_B}{T_c(\mu_B)}\right)^2 + \kappa_4 \left(\frac{\mu_B}{T_c(\mu_B)}\right)^4 + \mathcal{O}(\mu_B^6)$$

- Equation of state: p, s, n_i, ϵ , input for hydro and models, from zero to large density
- Fluctuations of conserved charges

$$\chi_{ijk}^{BQS}(T) = \left. \frac{\partial^{i+j+k} \left(p/T^4 \right)}{\partial \left(\mu_B/T \right)^i \partial \left(\mu_Q/T \right)^j \partial \left(\mu_S/T \right)^k} \right|_{\mu=0}$$

- Connection to experiment (cumulants of net-proton, net-charge, etc.)
- Signatures for the QCD critical point

Lattice formulation of QCD

In the non-perturbative regime where the coupling g_s is not small, lattice QCD is the major tool of investigation of equilibrium properties of QCD

- The theory is defined on a discretized 3+1d spacetime. Quark fields on the sites, gauge fields on the links.
- The partition function is given by a finite number of integrals:

$$Z[U, \bar{\psi}, \psi] = \int \mathcal{D}U \, \mathcal{D}\bar{\psi} \, \mathcal{D}\psi \, e^{-S_G[U, \bar{\psi}, \psi] - S_F[U, \bar{\psi}, \psi]}$$
$$= \int \mathcal{D}U \, \det M[U] \, e^{-S_G[U]}$$

• Observables \hat{O} can then be calculated as:

$$\left\langle \hat{O} \right\rangle = \frac{1}{Z} \int \mathcal{D}U \,\hat{O} \,\det M[U] \,e^{-S_G[U]}$$

The equation of state of QCD

- Lattice QCD is the most robust tool to determine QCD thermodynamics
- Known at $\mu_B = 0$ to high precision for a few years now (continuum limit, physical quark masses) \longrightarrow Agreement between different calculations (2013-2014)

From grancanonical partition function ${\mathcal Z}$

- * **Pressure**: $p = -k_B T \frac{\partial \ln Z}{\partial V}$
- * Entropy density: $s = \left(\frac{\partial p}{\partial T}\right)_{\mu_i}$
- * Charge densities: $n_i = \left(\frac{\partial p}{\partial \mu_i}\right)_{T,\mu_j \neq i}$
- * Energy density: $\epsilon = Ts p + \sum_i \mu_i n_i$
- * Speed of sound: $c_s^2 = \left(\frac{\partial p}{\partial \epsilon}\right)_{s/n_B}$

Borsányi et al., PLB 730 (2014) 99 Bazavov et al., PRD 90 (2014) 094503

Finite density: the sign/complex action problem

Statistical weight becomes complex if μ_B is real \Rightarrow sampling algorithms break down

$$Z(V,T,\mu) = \int \mathcal{D}U \, \det M(U,\mu) e^{-S_G(U)}$$

Not if $\mu = 0$, and not for imaginary chemical potential ($\mu^2 < 0$).

Several alternatives nowadays:

• Taylor expansion:

$$\frac{p(T,\mu_B)}{T^4} = \sum_{n=0}^{\infty} c_{2n}(T) \left(\frac{\mu_B}{T}\right)^{2n} , \qquad c_n(T) = \frac{1}{n!} \chi_n^B(T,\mu_B=0)$$

- Analytical continuation from imaginary μ_B
- Reweighting: single parameter, multi-parameter, phase quenched, sign quenched

Taylor, analytic continuation, reweighting

Taylor expansion Bollweg+ '22

Alternative expansion Borsanyi+ '21, '22

Approximate reweighting Mondal+ '21

Reweighting Borsanyi+ '22

Finite density: an alternative expansion scheme

One observes in imaginary μ_B simulations that $\chi_1^B(T, \hat{\mu}_B)$ differs from $\chi_2^B(T, 0)$ only by a redefinition of T:

Borsányi, PP et al., PRL 126 (2021) 232001, PRD 105 (2022) 114504

• Allow for more than $\mathcal{O}(\hat{\mu}^2)$ expansion of T' and let the coefficients be T-dependent:

$$\frac{\chi_1^B(T,\,\hat{\mu}_B)}{\hat{\mu}_B} = \chi_2^B(T',0) , \qquad \text{with} \quad T' = T(1+\kappa_2(T)\,\hat{\mu}_B^2 + \kappa_4(T)\,\hat{\mu}_B^4)$$

(we are simply re-organizing the Taylor expansion via an expansion in $\Delta T = T - T'$)

- Determine $\kappa_2(T)$, $\kappa_4(T)$ (from $\mu_B = 0$ or imaginary)
- Thermodynamics at finite μ_B is reconstruced from the same ansazt:

$$\frac{n_B(T,\,\hat{\mu}_B)}{T^3} = \hat{\mu}_B \chi_2^B(T',0)$$

From the baryon density n_B one finds the pressure, then all other quantities

$$\frac{p(T,\,\hat{\mu}_B)}{T^4} = \frac{p(T,0)}{T^4} + \int_0^{\hat{\mu}_B} \frac{n_B(T,\,\hat{\mu}'_B)}{T^3} \qquad \longrightarrow \qquad s,\epsilon,c_s^2,\cdots$$

Thermodynamic quantities have uncertainties well under control up to $\hat{\mu}_B \simeq 3.5$

No pathological (non-monotonic) behavior typical of other expansions

Note: recently reduced errors by improving precision at $\mu_B = 0$

Borsányi, PP et al., PRL 126 (2021) 232001, PRD 105 (2022) 114504, in preparation

Thermodynamic quantities have uncertainties well under control up to $\hat{\mu}_B \simeq 3.5$

No pathological (non-monotonic) behavior typical of other expansions

Note: recently reduced errors by improving precision at $\mu_B = 0$

Borsányi, PP et al., PRL 126 (2021) 232001, PRD 105 (2022) 114504, in preparation

Very broad coverage in μ_B with small errors, no sign of critical lensing

Compatible with results on the width of crossover transition at finite μ_B Hydro with BQS has shown the need to extend to 4D eos Abuali, PP *et al.*, in preparation

The QCD critical point

The crossover is "expected" to turn first order at larger μ_B

Critical point would be in the same universality class as 3D Ising model

Vovchenko, 2312.09528

 \rightarrow recent estimates seem to "converge"

Looking for critical behavior: experiment

Baryon fluctuations diverge at the critical point with increasing powers of the correlation length \rightarrow higher order net-proton fluctuations are most promising

Suggestive behaviour, though errors are still large \rightarrow STAR data coming soon

STAR, PRL 128 (2022), 202303; Stephanov, PRL 107 (2011) 052301

Looking for critical behavior: extrapolations

Extrapolations from lattice can be made for fluctuations too, e.g.:

$$\chi_2^B(T,\mu_B) = \chi_2^B(T) + \frac{1}{2}\chi_4^B(T) + \frac{1}{24}\chi_6^B(T) + \cdots$$

Lattice results similar to experiment, hard to draw conclusions for now

Borsányi et al., PRD 104 (2021) 094508Bazavov et al., PRD101 (2020), 074502

Looking for critical behavior: Lee-Yang edge singularities

Complex zeroes of partition function (LYE edges) mode to real μ at critical point

Zeroes from Padé fits to lattice QCD fluctuations, then universality-motivated $T-{\rm fit}$

 $\operatorname{Im}(\mu_{LY})(T) = A(T - T_c)^{\beta\delta}$

- Assumes critical point exists and we are close to it
- Errors are large and hard to constrain

Looking for critical behavior: critical equation of state

Combine lattice QCD alternative expansion scheme with 3D Ising critical behaviour

Family of equations of state for T = 10 - 800 MeV, $\mu_B = 0 - 700 \text{ MeV}$

Kahangirwe, PP et al., 2402.08636

Looking for critical behavior: critical equation of state

By construction, the equations of state agree with lattice QCD at low μ_B , AND have the correct critical behavior near the CP

- Thermodynamic consistency constrains parameters, including location of CP
- As input to hydro simulations \rightarrow comparison with data provides further constraints

A touch on heavy-flavour: heavy quark diffusion

Influence of the meduim on heavy quarkonium encoded in **transport coefficients** First dynamical lattice results for spatial diffusion coefficient D_s

Even smaller than previous (quenched) calculations and than phenomenological estimates \Rightarrow very fast thermalization of heavy quarks in the medium

Altenkort et al., PRL 130 (2023) 231902, PRL 132 (2024) 051902

Heavy $Q\bar{Q}$ potential

Quarkonium is suppressed in the medium compared to vacuum (pp) events Standard picture (Matsui, Satz) is that of dissolution by screening

New results on heavy quark-antiquark potential show no screening in the real part of the potential

The imaginary part of the potential still accounts for dissolution

Quarkonium: open quantum systems

Quarkonium is treated as an open quantum system in contact with the environment

Evolution of the density matrix ρ encodes all the information on the system. Lindblad equation with jump operators L_n that encode the non-unitary evolution of the system (imaginary potential)

$$\frac{d\rho}{dt} = -i\left[H,\rho\right] + \sum_{n} \left(L_n\rho L_n^{\dagger} - \frac{1}{2}\left\{L_n^{\dagger}L_n,\rho\right\}\right)$$

Inclusion of jumps needed for quantitative agreement with data

Brambilla et al., PRD 108 (2023) L011502

Summary

New exciting results in all areas of QGP theory!

Summary

New exciting results in all areas of QGP theory!

THANK YOU!

BACKUP

Confinement and chiral symmetry breaking

At low temperature and density, quarks and gluons are **confined** inside hadrons. The approximate **chiral symmetry** of QCD is **spontaneously broken**

At large temperature and/or density, a **deconfined medium** is formed, with quasi-free quarks and gluons, with **effectively restored chiral symmetry**

Borsányi et al., JHEP 1009:073 (2010)

The QCD transition: crossover vs. first order

On the lattice we study the volume scaling of certain quantities to determine the order of the transition

Left: physical masses

- For a crossover (left), the peak height is independent of the volume
- For a first order transition, it scales linearly with the volume

Aoki et al. Nature 443 (2006), Borsányi, PP et al., PRD 105 (2022)

Right: infinite masses (pure gauge)

The QCD transition: Columbia plot

As a function of the light (u,d) and strange quark masses, the order of the transition changes

- At the physical point $m_s/m_{ud} \simeq 27$, the transition is a smooth crossover!
- In the heavy-quark limit (pure gauge), the transition is first order

Fluctuations of conserved charges

• Theory: grand canonical fluctuations are derivatives of the free energy:

$$Z(V, T, \mu_B, \mu_Q, \mu_S) = \sum_{B,Q,S} e^{B\mu_B} e^{Q\mu_Q} e^{S\mu_S} Z_C(V, T, B, Q, S)$$

wrt the associated chemical potentials:

$$\chi_{ijk}^{BQS}(T,\mu_B,\mu_Q,\mu_S) = \frac{1}{VT^3} \frac{\partial^{i+j+k} \ln Z(T,\mu_B,\mu_Q,\mu_S)}{\partial (\mu_B/T)^i \partial (\mu_Q/T)^j \partial (\mu_S/T)^k}$$

• Experiment: moments/cumulants $\langle (\Delta N)^n \rangle_{\text{events}}$ of <u>net-particle</u> distributions:

$$\langle B \rangle = \frac{1}{VT^3} \frac{\partial \ln Z \left(T, \mu_B, \mu_Q, \mu_S\right)}{\partial \left(\mu_B/T\right)} = \chi_1^B$$

$$\langle B^2 \rangle - \langle B \rangle^2 = \frac{1}{VT^3} \frac{\partial^2 \ln Z \left(T, \mu_B, \mu_Q, \mu_S\right)}{\partial \left(\mu_B/T\right)^2} = \chi_2^B$$

$$\langle BS \rangle - \langle B \rangle \langle S \rangle = \frac{1}{VT^3} \frac{\partial^2 \ln Z \left(T, \mu_B, \mu_Q, \mu_S\right)}{\partial \left(\mu_B/T\right) \partial \left(\mu_S/T\right)} = \chi_{11}^{BS}$$

Heavy-ion collisions: event-by-event fluctuations

- Conserved charges in QCD are all quark numbers
 - \longrightarrow B (baryon number), Q (electric charge), S (strangeness)
- Weak effects are not considered (time's too short)
- Charm is ignored (might not thermalize)
- Conserved charges are conserved only on average in experiment

STAR Collaboration: PRL 112 (2014) 032302

Fluctuations of conserved charges

How can CONSERVED CHARGES fluctuate?

- If we could measure ALL particles in a collision, they would not
- If we look at a small enough subsystem, fluctuations occur and become meaningful

Simulations at imaginary chemical potential

- While for real chemical potential
 (μ² > 0) det M(U) is complex, for
 imaginary chemical potential (μ² < 0)
 det M(U) is real
- We perform simulations at imaginary chemical potentials:

$$\hat{\mu}_B = i \frac{j\pi}{8} \quad j = 0, 1, 2, \dots$$

We then analytically continue to $\mu^2 > 0$ by means of suitable extrapolation schemes

Simulations at imaginary chemical potential

Strangeness neutrality (or not)

Set the chemical potentials for heavy-ion collisions scenario, or simpler setup:

$$\langle n_S \rangle = 0$$
 $\langle n_Q \rangle = 0.4 \langle n_B \rangle$ or $\mu_Q = \mu_S = 0$

Chiral condensate and chiral susceptibility at imaginary chemical potential

Borsányi, PP et al. PRL 125 (2020), 052001

Lattice QCD at finite μ_B - Taylor coefficients

cane

• Fluctuations of baryon number are the Taylor expansion coefficients of the pressure

$$\chi^{BQS}_{ijk}(T) = \left. \frac{\partial^{i+j+k} p/T^4}{\partial \hat{\mu}^i_B \partial \hat{\mu}^j_Q \partial \hat{\mu}^k_S} \right|_{\vec{\mu}=0}$$

- Signal extraction is increasingly difficult with higher orders, especially in the transition region
- Higher order coefficients present a more complicated structure

Energy density up to $\hat{\mu}_B = 3.5$ with $\mu_S = 0$ and $n_S = 0$

Observables

Nuclear modification factor

$$R_{AA} = \frac{1}{N_{\text{coll}}} \frac{\frac{dN^{AA}}{dp_T}}{\frac{dN^{PP}}{dp_T}} \quad (=1 \text{ if no medium})$$

Anisotropic flow

Fourier coefficients of azimuthal distribution

$$\rho(\phi) = \frac{1}{2\pi} \left[1 + 2\sum_{n} v_n \cos(n(\phi - \psi_s)) \right] \quad (= 0 \text{ if no medium})$$

ALICE, JHEP 11 (2018) 013

Arslandok et al., 2303.17254

QCD critical point: an additional problem

Critical b
more ehaviour in QCD is present independently of this "high-T" critical point
 Critical point at the liquid-gas transition $T\simeq 20\,{\rm MeV},\,\mu_B\simeq 900\,{\rm MeV}$

Additional (different) critical behaviour in the limit $m_q \to 0$ at $\mu_B = 0$

The width of the transition at finite chemical potential

We can extrapolate our results for $\langle \bar{\psi}\psi \rangle$ along contours of constant $\langle \bar{\psi}\psi \rangle$ (left) or constant μ_B/T (right)

The extrapolated $\langle \bar{\psi}\psi \rangle$ at finite μ_B is quite precise for $\mu_B < 3T$

The width of the transition at finite chemical potential

As a side product of our analysis, we get at $\mu_B = 0$ the most accurate determination of T_c :

$$T_c(LT = 4, \mu_B = 0) = 158.0 \pm 0.6 \text{ MeV}$$

while for the width we obtain

 $\Delta T(LT = 4, \mu_B = 0) = 15.0 \pm 1.0 \text{ MeV}$

We also note that the width of the transition has a very mild chemical potential dependence

The strength of the transition at finite chemical potential

- We can look at the strength of the transition by looking at the peak value of $\chi(T)$
- In the case of a true transition, this peak value would diverge for $V \to \infty$
- We see again an extremely mild dependence on $\hat{\mu}_B$, suggesting that the strength of the transition does not change

Equation of state from the lattice

The pressure cannot be determined directly (not a derivative of $\ln Z$ wrt to a parameter), but via an integral of the trace anomaly I(T):

$$\frac{p(T)}{T^4} = \frac{p(T_0)}{T_0^4} + \int_{T_0}^T \frac{dT'}{T'} \frac{I(T')}{T'^4}$$

where the **trace anomaly** I(T) can be determined directly on the lattice:

$$\frac{I(T)}{T^4} = N_\tau^4 \left(\boxed{T > 0} - \boxed{T = 0} \right)$$

but needs renormalization, which means (a lot of) simulations at T = 0 are needed

I. Pressure constant

We calculate the integration constant $\frac{p(T_0)}{T_0^4}$ at a chosen $T_0 = 185 \text{ MeV}$.

The pressure is determined as an integral in the quark masses down from infinity (where p = 0):

$$\frac{p(T_0)}{T_0^4} = \int_{m_s}^{m_l} dm_2 \left\langle \bar{\psi}\psi \right\rangle_{R,2} (m_2) + \int_{\infty}^{m_s} dm_3 \left\langle \bar{\psi}\psi \right\rangle_{R,3} (m_3)$$

We first integrate in the two light flavours up to m_s , then the three flavours up to infinity by fitting an exponential.

Note: the chiral condensates $\langle \bar{\psi}\psi \rangle_{R,i}$ are the renormalized ones

I. Pressure constant

We calculate the integration constant with two settings of the scale, with and without applying the tree level improvement on the observables $\rightarrow 4x$ systematics

For the first time, we have results for up to $N_t = 16$ which allow us to discard $N_t = 8$ in the continuum extrapolation. $\Rightarrow \sim 2x$ improvement in uncertainty

II. Trace anomaly

We determine on our lattices $32^3 \times 8$, $40^3 \times 10$, $48^3 \times 12$, $64^3 \times 16$ the trace anomaly:

then perform a global continuum extrapolation + spline fit in T.

Now we have both ingredients to determine the equation of state at $\mu_B = 0$, as shown previously:

$$\frac{p(T)}{T^4} = \frac{p(T_0)}{T_0^4} + \int_{T_0}^T \frac{dT'}{T'} \frac{I(T')}{{T'}^4}$$

From the pressure, the other quantities follow. At $\mu_B = 0$, normalized quantities $\hat{O}(T)$:

$$\hat{s} = 4\hat{p}(T) + T\frac{d\hat{p}(T)}{dT}$$
$$\hat{\epsilon}(T) = \hat{s}(T) - \hat{p}(T)$$
$$c_s^2(T) = \frac{\hat{I}(T) + 4\hat{p}(T)}{7\hat{I}(T) + 12\hat{p}(T) + T\frac{d\hat{I}(T)}{dT}}$$

Equation of state at $\hat{\mu}_B = 0$

We can compare the resulting equation of state at $\mu_B = 0$ to our previous result from 2014 Borsányi+ '14

Note: full systematics analysis still in the making, more statistics coming at $N_{\tau} = 16$