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The quark gluon plasma and the QCD phase diagram

What: deconfined and chirally restored medium

Where/when: early Universe down to ∼ 10−6 − 10−5 s after the Big Bang, AND iven

sufficient energy, we can re-create it in relativistic heavy-ion collisions

Summarize our knowledge in the QCD phase diagram, with evidence from experiment + theory

� Hadron phase at low T/µ, QGP at high T/µ

� Crossover at zero density at T ≃ 160MeV

� Heavy-ion collisions probe high T, varying

density with energy scans

� Ordinary nuclear matter at T ≃ 0 and

µB ≃ 922MeV

� Critical point? Exotic phases?
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Heavy-ion collisions: the “standard model”

Arslandok et al., 2303.17254
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Hydrodynamic simulations

The bulk evolution of the system is described by relativistic viscous hydrodynamics:

∂µT
µν = 0 ∂µN

µ = 0

→ evolution from conservation equations

Properties of the medium is encoded in transport coefficients: shear viscosity η/s, bulk

viscosity ζ/s, ...

Plumberg et al., 2312.07415

Borsanyi et al., PLB 730 (2014) 99

Input: initial conditions, equation of state (to close the set of equations)

Output: after hadronization and an afterburner, particle spectra → RAA, v2, ... 3/25



Hydrodynamic simulations

Hydrodynamic simulations can reproduce experimental data and constrain the physics

Bayesian analyses have been used to constrain e.g. the equation of state and the

viscosity
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Pratt et al., PRL 114 (2015) 202301
Bernhard et al., Nature Phys. 15 (2019) 1113

� Posterior equation of state in agreement with theroetical calculations

� QGP is the most perfect fluid know to humanity! 4/25



Hydrodynamic simulations: shear and bulk viscosity

Large scale Bayesian analysis on Au+Au RHIC data @
√
s =200, 19.6, 7.7 GeV
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Very tight constraints on the chemical potential dependence of shear and bulk viscosity

Shen et al., PRL 132 (2024) 072301 5/25



Hydrodynamic simulations: B,Q,S conserved charges

Full trajectories of hydro cells until hadronization. We can have a picture of density

fluctuations in all B,Q, S, as a function of T

Plumberg et al., 2312.07415

Results obtained with a 4D lattice QCD-based equation of state. Big challenge for eos,

very large µ needed even at LHC, where ⟨µi⟩ = 0 6/25



Thermodynamic description of QCD

The thermodynamics of QCD is of fundamental interest, in itself and as input for a

number of applications

� Transition line necessary for models, information on phase structure

Tc(µB)

Tc(µB = 0)
= 1 + κ2

(
µB

Tc(µB)

)2

+ κ4

(
µB

Tc(µB)

)4

+O(µ6
B)

� Equation of state: p, s, ni, ϵ, input for hydro and models, from zero to large density

� Fluctuations of conserved charges

χBQSijk (T ) =
∂i+j+k

(
p/T 4

)
∂ (µB/T )

i
∂ (µQ/T )

j
∂ (µS/T )

k

∣∣∣∣∣
µ=0

� Connection to experiment (cumulants of net-proton, net-charge, etc.)

� Signatures for the QCD critical point

7/25



Lattice formulation of QCD

In the non-perturbative regime where the coupling gs is not small, lattice QCD is the

major tool of investigation of equilibrium properties of QCD

� The theory is defined on a discretized 3+1d

spacetime. Quark fields on the sites, gauge fields

on the links.

� The partition function is given by a finite number

of integrals:

Z[U, ψ̄, ψ] =

∫
DU Dψ̄Dψ e−SG[U,ψ̄,ψ]−SF [U,ψ̄,ψ]

=

∫
DU detM [U ] e−SG[U ]

� Observables Ô can then be calculated as:〈
Ô
〉
=

1

Z

∫
DU Ô detM [U ] e−SG[U ]

8/25



The equation of state of QCD

� Lattice QCD is the most robust tool to determine QCD thermodynamics

� Known at µB = 0 to high precision for a few years now (continuum limit, physical

quark masses) −→ Agreement between different calculations (2013-2014)

From grancanonical partition function Z

∗ Pressure: p = −kBT ∂ lnZ
∂V

∗ Entropy density: s =
(

∂p
∂T

)
µi

∗ Charge densities: ni =
(

∂p
∂µi

)
T,µj ̸=i

∗ Energy density: ϵ = Ts− p+
∑

i µini

∗ Speed of sound: c2s =
(
∂p
∂ϵ

)
s/nB

Borsányi et al., PLB 730 (2014) 99

Bazavov et al., PRD 90 (2014) 094503 9/25



Finite density: the sign/complex action problem

Statistical weight becomes complex if µB is real ⇒ sampling algorithms break down

Z(V, T, µ) =

∫
DU detM(U, µ)e−SG(U)

Not if µ = 0, and not for imaginary chemical potential (µ2 < 0).

Several alternatives nowadays:

� Taylor expansion:

p(T, µB)

T 4
=

∞∑
n=0

c2n(T )
(µB
T

)2n

, cn(T ) =
1

n!
χBn (T, µB = 0)

� Analytical continuation from imaginary µB

� Reweighting: single parameter, multi-parameter, phase quenched, sign quenched

10/25



Taylor, analytic continuation, reweighting

Taylor expansion Bollweg+ ’22 Approximate reweighting Mondal+ ’21
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Alternative expansion Borsanyi+ ’21, ’22 Reweighting Borsanyi+ ’22
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https://arxiv.org/pdf/2212.09043.pdf
https://arxiv.org/pdf/2106.03165.pdf
https://arxiv.org/pdf/2102.06660.pdf
https://arxiv.org/pdf/2202.05574.pdf
https://arxiv.org/pdf/2208.05398.pdf


Finite density: an alternative expansion scheme

One observes in imaginary µB simulations that χB1 (T, µ̂B) differs from χB2 (T, 0) only by a

redefinition of T :

χB1 (T, µ̂B)

µ̂B
= χB2 (T

′, 0) , with T ′ = T
(
1 + κ µ̂2

B

)
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Borsányi, PP et al., PRL 126 (2021) 232001, PRD 105 (2022) 114504
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Equation of state at finite µ̂B

� Allow for more than O( µ̂2) expansion of T ′ and let the coefficients be T−dependent:

χB1 (T, µ̂B)

µ̂B
= χB2 (T

′, 0) , with T ′ = T (1 + κ2(T ) µ̂
2
B + κ4(T ) µ̂

4
B)

(we are simply re-organizing the Taylor expansion via an expansion in ∆T = T − T ′)

� Determine κ2(T ), κ4(T ) (from µB = 0 or imaginary)

� Thermodynamics at finite µB is reconstruted from the same ansazt:

nB(T, µ̂B)

T 3
= µ̂Bχ

B
2 (T

′, 0)

From the baryon density nB one finds the pressure, then all other quantities

p(T, µ̂B)

T 4
=
p(T, 0)

T 4
+

∫ µ̂B

0

dµ̂′
B

nB(T, µ̂
′
B)

T 3
−→ s, ϵ, c2s, · · ·

13/25



Equation of state at finite µ̂B

Thermodynamic quantities have uncertainties well under control up to µ̂B ≃ 3.5

No pathological (non-monotonic) behavior typical of other expansions
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Borsányi, PP et al., PRL 126 (2021) 232001, PRD 105 (2022) 114504, in preparation
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Equation of state at finite µ̂B

Thermodynamic quantities have uncertainties well under control up to µ̂B ≃ 3.5

No pathological (non-monotonic) behavior typical of other expansions
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Borsányi, PP et al., PRL 126 (2021) 232001, PRD 105 (2022) 114504, in preparation
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Equation of state at finite µ̂B

Very broad coverage in µB with small errors, no sign of critical lensing
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Borsányi et al., PRL 125 (2020) 052001

Compatible with results on the width of crossover transition at finite µB

Hydro with BQS has shown the need to extend to 4D eos Abuali, PP et al., in preparation 15/25



The QCD critical point

The crossover is “expected” to turn first order at larger µB

Critical point would be in the same universality class as 3D Ising model
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Vovchenko, 2312.09528

→ recent estimates seem to “converge” 16/25



Looking for critical behavior: experiment

Baryon fluctuations diverge at the critical point with increasing powers of the correlation

length → higher order net-proton fluctuations are most promising

Central Au + Au CollisionsCentral Au + Au Collisions
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Suggestive behaviour, though errors are still large → STAR data coming soon

STAR, PRL 128 (2022), 202303; Stephanov, PRL 107 (2011) 052301
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Looking for critical behavior: extrapolations

Extrapolations from lattice can be made for fluctuations too, e.g.:

χB2 (T, µB) = χB2 (T ) +
1

2
χB4 (T ) +

1

24
χB6 (T ) + · · ·
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Lattice results similar to experiment, hard to draw conclusions for now

Borsányi et al., PRD 104 (2021) 094508Bazavov et al., PRD101 (2020), 074502
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Looking for critical behavior: Lee-Yang edge singularities

Complex zeroes of partition function (LYE edges) mode to real µ at critical point

Zeroes from Padé fits to lattice QCD fluctuations, then universality-motivated T−fit

Im(µLY )(T ) = A(T − Tc)
βδ

⇒ Tc ∼ 100± 30MeV µBC ∼ 550± 50MeV

� Assumes critical point exists and we are close to it

� Errors are large and hard to constrain

Clarke et al., 2401.08820; Basar, 2312.06952 19/25



Looking for critical behavior: critical equation of state

Combine lattice QCD alternative expansion scheme with 3D Ising critical behaviour

Family of equations of state for T = 10− 800MeV, µB = 0− 700MeV
Kahangirwe, PP et al., 2402.08636
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Looking for critical behavior: critical equation of state

By construction, the equations of state agree with lattice QCD at low µB , AND have the

correct critical behavior near the CP

� Thermodynamic consistency constrains parameters, including location of CP

� As input to hydro simulations → comparison with data provides further constraints

Kahangirwe, PP et al., 2402.08636
21/25



A touch on heavy-flavour: heavy quark diffusion

Influence of the meduim on heavy quarkonium encoded in transport coefficients

First dynamical lattice results for spatial diffusion coefficient Ds
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Even smaller than previous (quenched) calculations and than phenomenological estimates

⇒ very fast thermalization of heavy quarks in the medium

Altenkort et al., PRL 130 (2023) 231902, PRL 132 (2024) 051902
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Heavy QQ̄ potential

Quarkonium is suppressed in the medium compared to vacuum (pp) events

Standard picture (Matsui, Satz) is that of dissolution by screening

New results on heavy quark-antiquark potential show no screening in the real part of the

potential

The imaginary part of the potential still accounts for dissolution
Bazavov et al., 2308.16587
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Quarkonium: open quantum systems

Quarkonium is treated as an open quantum system in contact with the environment

Evolution of the density matrix ρ encodes all the information on the system. Lindblad equation

with jump operators Ln that encode the non-unitary evolution of the system (imaginary potential)

dρ

dt
= −i [H, ρ] +

∑
n

(
LnρL

†
n − 1

2

{
L†

nLn, ρ
})

Inclusion of jumps needed for quantitative agreement with data
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Brambilla et al., PRD 108 (2023) L011502
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Summary

New exciting results in all areas of QGP theory!
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Confinement and chiral symmetry breaking

At low temperature and density, quarks and gluons are confined inside hadrons. The

approximate chiral symmetry of QCD is spontaneously broken
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At large temperature and/or density, a deconfined medium is formed, with quasi-free

quarks and gluons, with effectively restored chiral symmetry

Borsányi et al., JHEP 1009:073 (2010)



The QCD transition: crossover vs. first order

On the lattice we study the volume scaling of certain quantities to determine the order of

the transition

Left: physical masses Right: infinite masses (pure gauge)

� For a crossover (left), the peak height is independent of the volume

� For a first order transition, it scales linearly with the volume

Aoki et al. Nature 443 (2006), Borsányi, PP et al., PRD 105 (2022)



The QCD transition: Columbia plot

As a function of the light (u,d) and strange quark masses, the order of the transition

changes

� At the physical point ms/mud ≃ 27, the transition is a smooth crossover!

� In the heavy-quark limit (pure gauge), the transition is first order



Fluctuations of conserved charges

� Theory: grand canonical fluctuations are derivatives of the free energy:

Z(V, T, µB , µQ, µS) =
∑
B,Q,S

eBµBeQµQeSµSZC(V, T,B,Q, S)

wrt the associated chemical potentials:

χBQSijk (T, µB , µQ, µS) =
1

V T 3

∂i+j+k lnZ (T, µB , µQ, µS)

∂ (µB/T )
i
∂ (µQ/T )

j
∂ (µS/T )

k

� Experiment: moments/cumulants ⟨(∆N)n⟩events of net-particle distributions:

⟨B⟩ = 1

V T 3

∂ lnZ (T, µB , µQ, µS)

∂ (µB/T )
= χB1〈

B2
〉
− ⟨B⟩2 =

1

V T 3

∂2 lnZ (T, µB , µQ, µS)

∂ (µB/T )
2 = χB2

⟨BS⟩ − ⟨B⟩ ⟨S⟩ = 1

V T 3

∂2 lnZ (T, µB , µQ, µS)

∂ (µB/T ) ∂ (µS/T )
= χBS11



Heavy-ion collisions: event-by-event fluctuations

� Conserved charges in QCD are all quark numbers

−→ B (baryon number), Q (electric charge), S (strangeness)

� Weak effects are not considered (time’s too short)

� Charm is ignored (might not thermalize)

� Conserved charges are conserved only on average in experiment

STAR Collaboration: PRL 112 (2014) 032302



Fluctuations of conserved charges

How can CONSERVED CHARGES fluctuate?

� If we could measure ALL particles in a collision, they would not

� If we look at a small enough subsystem, fluctuations occur and become meaningful



Simulations at imaginary chemical potential

� While for real chemical potential

(µ2 > 0) detM(U) is complex, for

imaginary chemical potential (µ2 < 0)

detM(U) is real

� We perform simulations at imaginary

chemical potentials:

µ̂B = i
jπ

8
j = 0, 1, 2, ...

continuation
d(p/T^4)/dµ

Tc(µ)

T

µ2/T2

Ro
be

rg
e-

W
ei

ss

real chemical potentialslattice simulations

1.221.622.022.42

ĸ

We then analytically continue to µ2 > 0 by means of suitable extrapolation schemes



Simulations at imaginary chemical potential

Strangeness neutrality (or not)

Set the chemical potentials for heavy-ion collisions scenario, or simpler setup:

⟨nS⟩ = 0 ⟨nQ⟩ = 0.4 ⟨nB⟩ or µQ = µS = 0



Chiral observables at imaginary µB

Chiral condensate and chiral susceptibility at imaginary chemical potential
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Borsányi, PP et al. PRL 125 (2020), 052001



Lattice QCD at finite µB - Taylor coefficients

� Fluctuations of baryon number are

the Taylor expansion coefficients of

the pressure

χBQS
ijk (T ) =

∂i+j+kp/T 4

∂µ̂i
B∂µ̂

j
Q∂µ̂

k
S

∣∣∣∣∣
µ⃗=0

� Signal extraction is increasingly

difficult with higher orders, especially

in the transition region

� Higher order coefficients present a

more complicated structure
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(also e.g., HotQCD: Bazavov et al. PRD101 (2020), 074502)



Equation of state at finite µ̂B

Energy density up to µ̂B = 3.5 with µS = 0 and nS = 0
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Observables

Nuclear modification factor

RAA =
1

Ncoll

dNAA

dpT
dNpp

dpT

(= 1 if no medium)

Anisotropic flow

Fourier coefficients of azimuthal distribution

ρ(ϕ) =
1

2π

[
1 + 2

∑
n

vn cos(n(ϕ− ψs))

]
(= 0 if no medium)

Snellings, New J. Phys. 13 055008
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QCD critical point: an additional problem

Critical bmore ehaviour in QCD is present independently of this “high-T” critical point

Critical point at the liquid-gas transition T ≃ 20MeV, µB ≃ 900MeV
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The width of the transition at finite chemical potential

We can extrapolate our results for
〈
ψ̄ψ

〉
along contours of constant

〈
ψ̄ψ

〉
(left) or constant

µB/T (right)
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The width of the transition at finite chemical potential

As a side product of our analysis, we get at

µB = 0 the most accurate determination of

Tc:

Tc(LT = 4, µB = 0) = 158.0± 0.6 MeV

while for the width we obtain

∆T (LT = 4, µB = 0) = 15.0± 1.0 MeV
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We also note that the width of the transition has a very mild chemical

potential dependence



The strength of the transition at finite chemical potential

� We can look at the strength of the transition by looking at the peak value of χ(T )

� In the case of a true transition, this peak value would diverge for V → ∞
� We see again an extremely mild dependence on µ̂B , suggesting that the strength of

the transition does not change
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Equation of state from the lattice

The pressure cannot be determined directly (not a derivative of lnZ wrt to a parameter),

but via an integral of the trace anomaly I(T ):

p(T )

T 4
=
p(T0)

T 4
0

+

∫ T

T0

dT ′

T ′
I(T ′)

T ′4

where the trace anomaly I(T ) can be determined directly on the lattice:

I(T )

T 4
= N4

τ

(
T > 0 − T = 0

)
but needs renormalization, which means (a lot of) simulations at T = 0 are needed
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I. Pressure constant

We calculate the integration constantp(T0)
T 4
0

at a chosen T0 = 185MeV.

The pressure is determined as an integral in the

quark masses down from infinity (where p = 0):

p(T0)

T 4
0

=

∫ ml

ms

dm2

〈
ψ̄ψ

〉
R,2 (m2)

+

∫ ms

∞
dm3

〈
ψ̄ψ

〉
R,3 (m3)

We first integrate in the two light flavours up

to ms, then the three flavours up to infinity by

fitting an exponential.  0
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I. Pressure constant

We calculate the integration constant with two settings of the scale, with and without

applying the tree level improvement on the observables → 4x systematics
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For the first time, we have results for up to Nt = 16 which allow us to discard Nt = 8 in

the continuum extrapolation. ⇒ ∼ 2x improvement in uncertainty



II. Trace anomaly

We determine on our lattices 323×8, 403×10, 483×12, 643×16 the trace anomaly:
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Equation of state at µ̂B = 0

Now we have both ingredients to determine the equation of state at µB = 0, as shown

previously:

p(T )

T 4
=
p(T0)

T 4
0

+

∫ T

T0

dT ′

T ′
I(T ′)

T ′4

From the pressure, the other quantities follow. At µB = 0, normalized quantities Ô(T ):

ŝ = 4p̂(T ) + T
dp̂(T )

dT

ϵ̂(T ) = ŝ(T )− p̂(T )

c2s(T ) =
Î(T ) + 4p̂(T )

7Î(T ) + 12p̂(T ) + T dÎ(T )
dT



Equation of state at µ̂B = 0

We can compare the resulting equation of state at µB = 0 to our previous result from 2014

Borsányi+ ’14
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