Exploring the multidimensional structure of the nucleon

L. L. Pappalardo (pappalardo@fe.infn.it)

Understanding the proton and its structure

Structure of matter: 2 centuries of investigations and discoveries!

We have reached what we consider the most fundamental level of nature

Understanding the proton and its structure
Structure of matter: 2 centuries of
 investigations and discoveries!

We have reached what we consider the most fundamental level of nature

But the nucleon is not just a bound state of 3 quarks! Rather it appears as a complex system of valence and sea quarks, and gluons interacting with each-other and moving relative to each-other.

Understanding the proton and its structure

Key question: how do the basic properties of the nucleon (mass, charge, spin, magnetic moment, etc.) emerge from this gurgling microscopic world?
\rightarrow need to access the effective degrees of freedom and study their interactions at large distances

Understanding the proton and its structure

Key question: how do the basic properties of the nucleon (mass, charge, spin, magnetic moment, etc.) emerge from this gurgling microscopic world?
\rightarrow need to access the effective degrees of freedom and study their interactions at large distances

Since the late '60s, Deep Inelastic Scattering has proven to be the most suitable process to access these d.o.f. and study their complex dynamics within nucleons.

Understanding the proton and its structure

Key question: how do the basic properties of the nucleon (mass, charge, spin, magnetic moment, etc.) emerge from this gurgling microscopic world?
\rightarrow need to access the effective degrees of freedom and study their interactions at large distances

Since the late '60s, Deep Inelastic Scattering has proven to be the most suitable process to access these d.o.f. and study their complex dynamics within nucleons.

Parton model: description in terms of PDFs in a frame where the nucleon moves very fast and all transverse d.o.f. are neglected.

The nucleon appears as a bunch of co-linearly moving partons, each carrying a fraction x of the nucleon momentum.

The proton collinear structure

N^{2}	U	L	T
\mathbf{U}	$\begin{gathered} f_{1} \\ \text { number } \\ \text { density } \end{gathered}$		
L		g_{1} helicity	
T			

The proton collinear structure

The proton collinear structure

$x f^{p}\left(x, Q^{2}\right)$

Spin

- rather good knowledge of \boldsymbol{f}_{1} and \boldsymbol{g}_{1}
- some knowledge of $\boldsymbol{h}_{\boldsymbol{1}}$ from SIDIS
- But collinear PDFs provide only a 1D description of the nucleon structure!
- A more detailed and multidimensional picture of the nucleon requires a new paradigm!

A new frontier awaits us beyond the collinear approximation!

Transverse momentum

Longitudinal momentum $k^{+}=x P^{+}$

Spin

- Exploring this new territories requires taking into account the transverse d.o.f (momentum, position, spin) of both parton and nucleon and their correlations

A new frontier awaits us beyond the collinear approximation!

- Exploring this new territories requires taking into account the transverse d.o.f (momentum, position, spin) of both parton and nucleon and their correlations
- Final goal: 5-D Wigner function $W\left(\boldsymbol{x}, \boldsymbol{k}_{\perp}, \boldsymbol{r}_{\perp}\right) \rightarrow$ full phase-space knowledge of parton distributions ...but not directly accessible experimentally!
- One can access the 3D structure of the nucleon: there are two complementary ways!

nucleon tomography in mom. space

Courtesy QuantOm Collaboration

Courtesy QuantOm Collaboration

Courtesy QuantOm Collaboration

The main ingredients from experiments

- Multi-dimensional analysis \rightarrow high statistical precision \rightarrow High luminosity
- Wide kinematic coverage, access both CFR and TFR \rightarrow Large and uniform acceptance detectors
- Sensitivity to intrinsic $\boldsymbol{k}_{\perp} \rightarrow$ precision measurement of $P_{h \perp} \rightarrow$ Excellent tracking
- Quark flavour tagging \rightarrow Excellent hadron PID
- Large asymmetries \rightarrow High beam and target polarization, small target dilution
- Systematics well under control \rightarrow Reliable MC

The main contributors (with lepton probes)

HERMES (DESY)

JLab Hall-A

COMPASS/AMBER (CERN)

JLab Hall-B

JLab Hall-C

But also: BaBar, Belle, RHIC, LHC,...

The main contributors (with lepton probes)

HERMES (DESY)

JLab Hall-A

COMPASS/AMBER (CERN)

EIC (BNL)

Complementarity is the key!

JLab Hall-C

Limit defined by luminosity

But also: BaBar, Belle, RHIC, LHC,...

GPDs

GPDs \rightarrow nucleon tomography in coordinate space

- Describe correlations between the partons transverse position (impact parameter b_{\perp}) and longit. momentum (x)
- Provide nucleon tomography in \boldsymbol{x} - \boldsymbol{b}_{\perp} space

GPDs \rightarrow nucleon tomography in coordinate space

- Describe correlations between the partons transverse position (impact parameter b_{\perp}) and longit. momentum (x)
- Provide nucleon tomography in $\boldsymbol{x}-\boldsymbol{b}_{\perp}$ space

GPDs \rightarrow nucleon tomography in coordinate space

- Describe correlations between the partons transverse position (impact parameter b_{\perp}) and longit. momentum (x)
- Provide nucleon tomography in $\boldsymbol{x}-\boldsymbol{b}_{\perp}$ space

Chiral-odd
quark spin flip

Transversity GPDs: require helicity flip of the parton (accessible in DVMP)

Accessing GPDs via hard exclusive processes

Exclusive di-photon prod.

lepton-pair prod. in hard exclusive hadron scattering

Exclusive DY

Time-like Compton Scatt.

Accessing GPDs via hard exclusive processes

Exclusive di-photon prod.

lepton-pair prod. in hard exclusive hadron scattering

Exclusive DY

Time-like Compton Scatt.

Deeply Virtual Compton Scattering (DVCS)

- DVCS is the cleanest probe of GPDs (theoretical accuracy at NNLO)
- In the limit $-t / Q^{2} \ll 1$ the process factorises into a hard subprocess $\left(\gamma^{*} q \rightarrow q \gamma\right)+$ a soft non-perturbative part parametrized in terms of GPDs
- At leading-twist provides access to all chiral-even GPDS: H E $\tilde{H}(\tilde{E}$
- The amplitudes of the process can be parametrized in terms of Compton FF (CFF), related to integrals of GPDs, e.g.:

$$
\mathcal{H}(\xi, t)=\sum_{a} e_{q}^{2}\left\{\mathcal{P} \int_{-1}^{1} d x\left(H^{q}(x, \xi, t)-H^{q}(-x, \xi, t)\right)\left[\frac{1}{\xi-x}+\frac{1}{\xi+x}\right]+i \pi\left[H^{q}(\xi, \xi, t)-H^{q}(-\xi, \xi, t)\right]\right\}
$$

Deeply Virtual Compton Scattering (DVCS)

- DVCS is the cleanest probe of GPDs (theoretical accuracy at NNLO)
- In the limit $-t / Q^{2} \ll 1$ the process factorises into a hard subprocess $\left(\gamma^{*} q \rightarrow q \gamma\right)+$ a soft non-perturbative part parametrized in terms of GPDs
- At leading-twist provides access to all chiral-even GPDS: H ($\left.{ }^{(}\right)(\tilde{E}$
- The amplitudes of the process can be parametrized in terms of Compton FF (CFF), related to integrals of GPDs, e.g.:

$$
\mathcal{H}(\xi, t)=\sum_{a} e_{q}^{2}\left\{\mathcal{P} \int_{-1}^{1} d x\left(H^{q}(x, \xi, t)-H^{q}(-x, \xi, t)\right)\left[\frac{1}{\xi-x}+\frac{1}{\xi+x}\right]+i \pi\left[H^{q}(\xi, \xi, t)-H^{q}(-\xi, \xi, t)\right]\right\}
$$

Bethe-Heitler

- The Bethe-Heiltler processes result in the same final state (e, N, γ) \rightarrow experimentally undistinguishable

$$
\frac{d \sigma}{d x_{B} d Q^{2} d|t| d \phi} \propto\left|\mathcal{T}_{B H}\right|^{2}+\left|\mathcal{T}_{D V C S}\right|^{2}+\underbrace{\mathcal{T}_{D V C S} \mathcal{T}_{B H}^{*}+\mathcal{T}_{B H} \mathcal{T}_{D V C S}^{*}}_{I}
$$

Deeply Virtual Compton Scattering (DVCS)

- DVCS is the cleanest probe of GPDs (theoretical accuracy at NNLO)
- In the limit $-t / Q^{2} \ll 1$ the process factorises into a hard subprocess $\left(\gamma^{*} q \rightarrow q \gamma\right)+$ a soft non-perturbative part parametrized in terms of GPDs
- At leading-twist provides access to all chiral-even GPDS: H E $\tilde{H} \tilde{E}$
- The amplitudes of the process can be parametrized in terms of Compton FF (CFF), related to integrals of GPDs, e.g.:

$$
\mathcal{H}(\xi, t)=\sum_{a} e_{q}^{2}\left\{\mathcal{P} \int_{-1}^{1} d x\left(H^{q}(x, \xi, t)-H^{q}(-x, \xi, t)\right)\left[\frac{1}{\xi-x}+\frac{1}{\xi+x}\right]+i \pi\left[H^{q}(\xi, \xi, t)-H^{q}(-\xi, \xi, t)\right]\right\}
$$

Bethe-Heitler

- The Bethe-Heiltler processes result in the same final state (e, N, γ) \rightarrow experimentally undistinguishable

$$
\frac{d \sigma}{d x_{B} d Q^{2} d|t| d \phi} \propto\left|\mathcal{T}_{B H}\right|^{2}+\left|\mathcal{T}_{D V C S}\right|^{2}+\underbrace{\mathcal{T}_{D V C S} \mathcal{T}_{B H}^{*}+\mathcal{T}_{B H} \mathcal{T}_{D V C S}^{*}}_{I}
$$

- In the accessible kinematic regions the BH process is dominant over DVCS (can be precisely calculated)
- But GPDs can be accessed also through the interference!

Accessing GPDs

Each term of the cross section can be expressed in terms of harmonics in the azimuthal angle ϕ

$$
\begin{array}{r}
d \sigma_{B H} \propto c_{0}^{B H}+c_{1}^{B H} \cos \phi+c_{2}^{B H} \cos 2 \phi, \\
d \sigma_{D V C S}^{u n p o l} \propto c_{0}^{D V C S}+c_{1}^{D V C S} \cos \phi+c_{2}^{D V C S} \cos 2 \phi, \\
d \sigma_{D V C S}^{p o l} \propto s_{1}^{D V C S} \sin \phi, \\
\mathfrak{I}^{R e} \propto c_{0}^{I}+c_{1}^{I} \cos \phi+c_{2}^{I} \cos 2 \phi+c_{3}^{I} \cos 3 \phi, \\
\mathfrak{I}^{I m} \propto s_{1}^{I} \sin \phi+s_{2}^{I} \sin 2 \phi .
\end{array}
$$

- the coefficients of the pure DVCS terms \propto bilinear combinations CFFs
- The coefficients of the int. term \propto combinations of CFF and $\operatorname{Dirac}\left(F_{1}\right)$ and Pauli $\left(F_{2}\right)$ FF

Accessing GPDs

Each term of the cross section can be expressed in terms of harmonics in the azimuthal angle ϕ

$$
\begin{array}{r}
d \sigma_{\text {BH }} \propto c_{0}^{B H}+c_{1}^{B H} \cos \phi+c_{2}^{B H} \cos 2 \phi, \\
d \sigma_{\text {DVCS }}^{\text {unpol }} \propto c_{0}^{D V C S}+c_{1}^{D C C S} \cos \phi+c_{2}^{D C S} \cos 2 \phi, \\
d \sigma_{D V C S}^{\text {pol }} \propto s_{1}^{D V S} \sin \phi, \\
\mathfrak{I}^{R e} \propto c_{0}^{I}+c_{1}^{I} \cos \phi+c_{2}^{I} \cos 2 \phi+c_{3}^{I} \cos 3 \phi, \\
\mathfrak{I}^{I m} \propto s_{1}^{I} \sin \phi+s_{2}^{I} \sin 2 \phi .
\end{array}
$$

- the coefficients of the pure DVCS terms \propto bilinear combinations CFFs
- The coefficients of the int. term \propto combinations of CFF and $\operatorname{Dirac}\left(F_{1}\right)$ and Pauli (F_{2}) FF

Can build-up plenty of experimental observables, each with a specific azimuthal modulation and a specific sensitivity to the various CFF (\rightarrow GPDs):

- Beam-Charge asymmetry $\sigma\left(e^{+}, \phi\right)-\sigma\left(e^{-}, \phi\right) \propto \operatorname{Re}\left[F_{1} \mathcal{H}\right]$
- Beam-Spin Asymmetry $\sigma(\vec{e}, \phi)-\sigma(\overleftarrow{e}, \phi) \propto \operatorname{Im}\left[F_{1} \mathcal{H}\right]$
- Longitudinal Target-Spin Asymmetry
$\sigma(\overrightarrow{\vec{P}}, \phi)-\sigma(\stackrel{\widehat{P}}{ }, \phi) \propto \operatorname{Im}\left[F_{1} \widetilde{\mathcal{H}}\right]$
- Longitudinal Double-Spin Asymmetry $\sigma(\overrightarrow{\vec{P}}, \vec{e}, \phi)-\sigma(\overrightarrow{\vec{P}}, \overleftarrow{e}, \phi) \propto \operatorname{Re}\left[F_{1} \widetilde{\mathcal{H}}\right]$
- Transverse Target-Spin Asymmetry $\sigma\left(\phi, \phi_{S}\right)-\sigma\left(\phi, \phi_{S}+\pi\right) \propto \operatorname{Im}\left[F_{2} \mathcal{H}-F_{1} \mathcal{E}\right]$
- Transverse Double-Spin Asymmetry

$$
\sigma\left(\vec{e}, \phi, \phi_{S}\right)-\sigma\left(\overleftarrow{e}, \phi, \phi_{S}+\pi\right) \propto \operatorname{Re}\left[F_{2} \mathcal{H}-F_{1} \mathcal{E}\right]
$$

Selected results

Highly polarized e beam on unpolarized liquid H target

Polarization averaged cross section (includes BH)

Selected results

Highly polarized e beam on unpolarized liquid H target

Polarization averaged cross section (includes BH)

Beam polarized cross section difference (free from BH)

By fitting the data with a suitable parametrization in terms of the underlying CFFs one obtains the real and imaginary part of all four helicity-conserving CFFs!

Selected results

Jefferson Lab Hall A

Phys. Rev. Lett. 128, 252002 (2022)

First complete extraction of all chiral-even CFFs appearing in the DVCS cross section, including ε_{++}and $\widetilde{\varepsilon}_{++}$, sensitive to the poorly known E and \widetilde{E} GPDs.

Selected results

Jefferson Lab Hall A

Phys. Rev. Lett. 128, 252002 (2022)

First complete extraction of all chiral-even CFFs appearing in the DVCS cross section, including ε_{++}and $\widetilde{\varepsilon}_{++}$, sensitive to the poorly known E and \widetilde{E} GPDs.

t-dependence of $\operatorname{Im}(\mathcal{H})$ extracted in a global fit of measurements of σ and $\Delta \sigma$ from CLAS (open squares) and Hall-A (solid triangles) as well as on measurements of $A_{U L}$ and $A_{L L}$ asymmetries from CLAS (solid circles) in $20 Q^{2}$ bins!

Selected results

Jefferson Lab Hall A

Phys. Rev. Lett. 128, 252002 (2022)

First complete extraction of all chiral-even CFFs appearing in the DVCS cross section, including ε_{++}and $\widetilde{\varepsilon}_{++}$, sensitive to the poorly known E and \widetilde{E} GPDs.

t-dependence of $\operatorname{Im}(\mathcal{H})$ extracted in a global fit of measurements of σ and $\Delta \sigma$ from CLAS (open squares) and Hall-A (solid triangles) as well as on measurements of $A_{U L}$ and $A_{L L}$ asymmetries from CLAS (solid circles) in $20 Q^{2}$ bins!

Great expectations from JLab12, AMBER and EIC!

Phys. Rev. Lett. 130, 211902 (2023) Beam helicity 86%, unpol H target, 64 bins in $Q^{2}, \boldsymbol{x}_{\boldsymbol{B}}$, \boldsymbol{t}, sensitive to $\operatorname{Im}(\mathcal{H})$

Many new high-precision DVCS results are expected from JLab12 experiments:

- cross section measurements
- neutron DVCS (D target)
- long. and transverse TSA
- BCA (positron beam ?)

Great expectations from JLab12, AMBER and EIC!

Phys. Rev. Lett. 130, 211902 (2023) Beam helicity 86%, unpol H target, 64 bins in $\boldsymbol{Q}^{\mathbf{2}}, \boldsymbol{x}_{\boldsymbol{B}}$, \boldsymbol{t}, sensitive to $\operatorname{Im}(\mathcal{H})$

Many new high-precision DVCS results are expected from JLab12 experiments:

- cross section measurements
- neutron DVCS (D target)
- long. and transverse TSA
- BCA (positron beam ?)
arXiv:1808.00848 (2018)

Great expectations from JLab12, AMBER and EIC!

Phys. Rev. Lett. 130, 211902 (2023) Beam helicity 86\%, unpol H target, 64 bins in $\boldsymbol{Q}^{\mathbf{2}}, \boldsymbol{x}_{\boldsymbol{B}}$, \boldsymbol{t}, sensitive to $\operatorname{Im}(\mathcal{H})$

Nucl. Phys. A 1026 (2022) 122447

EIC projections: significant uncertainty reduction for GPD H of sea quarks and gluons at a particular x and Q^{2}

Many new high-precision DVCS results are expected from JLab12 experiments:

- cross section measurements
- neutron DVCS (D target)
- long. and transverse TSA
- BCA (positron beam ?)

EIC projections: impact parameter distributions for unpolarized sea quarks and gluons in an unpol. proton

GPDs and Gravitational Form Factors

The GPD H can also be related to the gravitational form factors (GFFs): $\quad \int d x \quad x H(x, \xi, t)=M_{2}(t)+\frac{4}{5} \xi^{2} d_{1}(t)$
$M_{2}(t)$ GFF: related to mass/energy distribution within the nucleon
$d_{1}(t)$ GFF: related to the shear forces and the pressure distribution within the nucleon

GPDs and Gravitational Form Factors

The GPD H can also be related to the gravitational form factors (GFFs): $\quad \int d x \quad x H(x, \xi, t)=M_{2}(t)+\frac{4}{5} \xi^{2} d_{1}(t)$ $M_{2}(t)$ GFF: related to mass/energy distribution within the nucleon $d_{1}(t)$ GFF: related to the shear forces and the pressure distribution within the nucleon

The pressure distribution within the proton has been extracted for the first time using DVCS BSAs and cross section measurements from CLAS data at $\mathbf{6} \mathbf{G e V}$.

Strong repulsive pressure near the center of the nucleon

A more precise determination of the CFF H and the related GPD H based on the new CLAS12 data will help to reduce the uncertainties significantly.

TMDs

TMDs \rightarrow nucleon tomography in momentum space

- 8 independent TMDs at LT
- depend on x and p_{T}

legend

nucleon moves to the right.

Courtesy C. Riedl

TMDs \rightarrow nucleon tomography in momentum space

Courtesy C. Riedl

Describe spin-orbit correlations of the form $\vec{S} \cdot\left(\vec{p}_{1} \times \vec{p}_{2}\right)$:

- generate flavour-dependent distorsions of the parton densities in transverse momentum plane (e.g. Sivers effect)
- can provide sensitivity to unknown parton OAM!
- 8 independent TMDs at LT
- depend on x and p_{T}

$x f_{1}\left(x, k_{T}, S_{T}\right)$

Sivers effect: unpolarized quarks in a transversely polarized nucleon

Accessing TMDs

The golden processes to measure TMDs are Drell-Yan and Semi-Inclusive DIS (SIDIS)

Accessing TMDs

The golden processes to measure TMDs are Drell-Yan and Semi-Inclusive DIS (SIDIS)

Accessing TMDs

The golden processes to measure TMDs are Drell-Yan and Semi-Inclusive DIS (SIDIS)

Fragmentation Functions (FF)

		quark		
		U	L	T
h	U	D_{1} ○		$\left.H_{1}^{\perp}()^{\circ}\right)$ -

TMD factorization:
$\sigma^{e p \rightarrow e h X}=\sum_{q} D F \otimes \sigma^{e q \rightarrow e q} \otimes F F$

Parton Distributions Functions (DF)				
(i)		quark		
		U	L	T
n	U	f_{1} ○		$h_{1}^{\perp}(\bigcirc)-(1)$
c	L		g_{1} (2) - (2)	$h_{1 L}^{\perp}(3)-(2)$
e o n	T	$f_{17}^{1}-$ - ${ }^{\text {a }}$--(b)	$g_{1 T}^{1} \bigcirc+-$ -	$\begin{aligned} & h_{1}-\infty+\infty \\ & h_{1}^{1}-\infty \end{aligned}$

The SIDIS cross section

The SIDIS cross section

$$
\begin{aligned}
& \frac{d \sigma^{h}}{d x d y d \phi_{S} d z d \phi d \mathbf{P}_{h \perp}^{2}}=\frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\epsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right) \\
& \left\{\begin{array}{l}
{\left[F_{\mathrm{UU}, \mathrm{~T}}+\epsilon F_{\mathrm{UU}, \mathrm{~L}}\right.} \\
\left.\quad+\sqrt{2 \epsilon(1+\epsilon)} \cos (\phi) F_{\mathrm{UU}}^{\cos (\phi)}+\epsilon \cos (2 \phi) F_{\mathrm{UU}}^{\cos (2 \phi)}\right]
\end{array}\right.
\end{aligned}
$$

Fragmentation Functions (FF)				
		quark		
			L	T
h	U	D_{1}		$H_{1}^{\perp} \bigcirc^{\circ}+\infty$

$$
\begin{aligned}
& +\quad \lambda_{l}\left[\sqrt{2 \epsilon(1-\epsilon)} \sin (\phi) F_{\mathrm{LU}}^{\sin (\phi)}\right] \\
& +S_{L} \quad\left[\sqrt{2 \epsilon(1+\epsilon)} \sin (\phi) F_{\mathrm{UL}}^{\sin (\phi)}+\epsilon \sin (2 \phi) F_{\mathrm{UL}}^{\sin (2 \phi)}\right]
\end{aligned}
$$

$$
+S_{L} \lambda_{l}\left[\sqrt{1-\epsilon^{2}} F_{\mathrm{LL}}+\sqrt{2 \epsilon(1-\epsilon)} \cos (\phi) F_{\mathrm{LL}}^{\cos (\phi)}\right]
$$

$$
+S_{T} \quad\left[\operatorname { s i n } (\phi - \phi _ { S }) \left(F_{\mathrm{UT}, \mathrm{~T}}^{\sin \left(\phi-\phi_{S}\right)}+\epsilon F_{\mathrm{UT}, \mathrm{~L}}^{\sin \left(\phi-\phi_{S}\right)}\right.\right.
$$

$$
+\epsilon \sin \left(\phi+\phi_{S}\right) F_{\mathrm{UT}}^{\sin \left(\phi+\phi_{S}\right)}+\epsilon \sin \left(3 \phi-\phi_{S}\right) F_{\mathrm{UT}}^{\sin \left(3 \phi-\phi_{S}\right.}
$$

$$
+\sqrt{2 \epsilon(1+\epsilon)} \sin \left(\phi_{S}\right) F_{\mathrm{UT}}^{\sin \left(\phi_{S}\right.}
$$

$$
\left.+\sqrt{2 \epsilon(1+\epsilon)} \sin \left(2 \phi-\phi_{S}\right) F_{\mathrm{UT}}^{\sin \left(2 \phi-\phi_{S}\right)}\right]
$$

$$
\begin{aligned}
+S_{T} \lambda_{l} & {\left[\sqrt{1-\epsilon^{2}} \cos \left(\phi-\phi_{S}\right) F_{\mathrm{LT}}^{\cos \left(\phi_{-} \phi_{S}\right)}\right.} \\
& +\sqrt{2 \epsilon(1-\epsilon)} \cos \left(\phi_{S}\right) F_{\mathrm{LT}}^{\cos \left(\phi_{S}\right)} \\
& \left.+\sqrt{2 \epsilon(1-\epsilon)} \cos \left(2 \phi-\phi_{S}\right) F_{\mathrm{LT}}^{\cos \left(2 \phi-\phi_{S}\right)}\right]
\end{aligned}
$$

Parton Distributions Functions (DF)				
(2)		quark		
		U	L	T
n	U	f_{1} ○		$h_{1}^{\perp}(\square)-($
u	L		g_{1} (\%)- (\%)	$h_{1 L}^{\perp}-$ -
e	T	$f_{1 T}^{1}$ - - - - -	$g_{1 T}^{\frac{1}{2}}$	

Bacchetta et al., JHEP 02, 093 (2007)

TMD effects and azimuthal modulations

TMD effects and azimuthal modulations

Sivers function

If non-zero: indicate orbital angular momentum (OAM) of partons inside the nucleon.

Sivers effect ($f_{1 T}^{\perp} \otimes D_{1}$): correlation between quark transverse momentum k_{T} and nucleon transverse polarization S_{T} generates a $\boldsymbol{\operatorname { s i n }}\left(\boldsymbol{\phi}-\boldsymbol{\phi}_{S}\right)$ modulation

TMD effects and azimuthal modulations

Sivers function

If non-zero: indicate orbital angular momentum (OAM) of partons inside the nucleon.

Boer-Mulders function

$$
\vec{s}_{T} \cdot\left(\widehat{P} \times \vec{k}_{T}\right)
$$

Sivers effect ($f_{1 T}^{\perp} \otimes D_{1}$): correlation between quark transverse momentum k_{T} and nucleon transverse polarization S_{T} generates a $\boldsymbol{\operatorname { s i n }}\left(\boldsymbol{\phi}-\boldsymbol{\phi}_{S}\right)$ modulation

$$
\vec{S} \cdot\left(\vec{p}_{1} \times \vec{p}_{2}\right)
$$

TMD effects and azimuthal modulations

Sivers function

$$
\vec{S}_{T} \cdot\left(\widehat{P} \times \vec{k}_{T}\right)
$$

If non-zero: indicate orbital angular momentum (OAM) of partons inside the nucleon.

Boer-Mulders function

$$
\vec{s}_{T} \cdot\left(\widehat{P} \times \vec{k}_{T}\right)
$$

Sivers effect ($f_{1 T}^{\perp} \otimes D_{1}$): correlation between quark transverse momentum k_{T} and nucleon transverse polarization S_{T} generates a $\boldsymbol{\operatorname { s i n }}\left(\boldsymbol{\phi}-\boldsymbol{\phi}_{S}\right)$ modulation

Collins effect ($h_{1} \otimes H_{1}^{\perp}$): correlation between quark transverse polarization s_{T} and final-state hadron transverse momentum $P_{h T}$ generates a $\boldsymbol{\operatorname { s i n }}\left(\boldsymbol{\phi}+\boldsymbol{\phi}_{S}\right)$ modulation
...and many others

The multi-D CLAS12 BSAs

- 10.6 GeV polarized electrons on unpol. H target
- beam polarization $\sim 86 \%$!
- Large statistics, large acceptance
- multi-dimensional analysis (344 4-Dim bins!)

The multi-D CLAS12 BSAs

- 10.6 GeV polarized electrons on unpol. H target
- beam polarization $\sim 86 \%$!
- Large statistics, large acceptance
- multi-dimensional analysis (344 4-Dim bins!)

$$
\boldsymbol{A}_{L U}^{\sin (\boldsymbol{\phi})} \propto \frac{F_{L U}^{\sin (\phi)}}{F_{U U}} \propto \frac{M}{Q}\left[e H_{1}^{\perp}+f_{1} \widetilde{\boldsymbol{G}}^{\perp}+g^{\perp} D_{1}+h_{1}^{\perp} \widetilde{\boldsymbol{E}}\right]
$$

The multi-D CLAS12 BSAs

- 10.6 GeV polarized electrons on unpol. H target
- beam polarization $\sim 86 \%$!
- Large statistics, large acceptance
- multi-dimensional analysis (344 4-Dim bins!)

$\boldsymbol{A}_{\boldsymbol{L U}}^{\sin (\boldsymbol{\phi})} \propto \frac{F_{L U}^{\sin (\phi)}}{F_{U U}} \propto \frac{M}{Q}\left[e H_{1}^{\perp}+f_{1} \widetilde{\boldsymbol{G}}^{\perp}+g^{\perp} D_{1}+h_{1}^{\perp} \widetilde{\boldsymbol{E}}\right]$

The multi-D CLAS12 BSAs

- 10.6 GeV polarized electrons on unpol. H target
- beam polarization $\sim 86 \%$!
- Large statistics, large acceptance
- multi-dimensional analysis (344 4-Dim bins!)

$\sin \phi$ modulation in a specific 4-dim bin

Data compared with 3 models assuming different contributions to $F_{L U}^{\sin (\phi)}$

Phys. Rev. Lett. 128 (2022) 6, 062005

amplitudes increase with increasing z, x, Q^{2}
peaking structure with varying mean value and width appears at large z

The COMPASS SIDIS Christmass present

$160 \mathrm{GeV} \mu$ on a ${ }^{6} \mathrm{LiD}$ transv. pol target

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

High-statistics measurement of Collins and Sivers asymmetries for transversely polarised deuterons

New results are presented on a high-statistics measurement of Collins and Sivers asymmetries of arget. The data were taken in 2022 with the COMPASS spectrometer using the 160 GeV muon at CERN, balancing the existing data on transersely polarised proton targets. The first results from bout two-thirds of the new data have total uncertainies smaller by b y toa factor of three compared to
he previous deuteron measurements. Using all the COMPASS proto and deutern results, boot the ransversity and the Sivers distribution functions of the u and d quark, as well as the tensor charge he measured x-range are extracted. In particular, the accuracy of the d quark results is significantly

The COMPASS Collaboration
(to be submitted to Phys. Rev. Letters)
arXiv:2401.00309v1

The COMPASS SIDIS Christmass presen \dagger

$160 \mathrm{GeV} \mu$ on a ${ }^{6} \mathrm{LiD}$ transv. pol target

arXiv:2401.00309v1

using combined data with previously published p and d results

TMDs extractions from global fits

TMDs extractions from global fits

J. High Energ. Phys. 2022, 127(2022)

TMDs extractions from global fits

J. High Energ. Phys. 2022, 127(2022)

Phys. Rev. D 81, 034023 (2010)

TMDs extractions from global fits

Phys. Rev. D 81, 034023 (2010)

TMDs extractions from global fits

TMDs extractions from global fits

Phys. Rev. D 81, 034023 (2010)
J. High Energ. Phys. 2022, 127(2022)

Phys. Rev. D 105, 034007 (2022)

Phys. Rev. D 102, 054002 (2020)

Conclusions

$>$ After decades of collinear studies, the 3D structure of the nucleon is now being revealed thanks to a huge International experimental and theoretical effort!

Conclusions

- After decades of collinear studies, the 3D structure of the nucleon is now being revealed thanks to a huge International experimental and theoretical effort!
$>$ A rich phenomenology and surprising effects arise when intrinsic transverse degrees of freedom (spin, momentum) are not integrated out!

Conclusions

- After decades of collinear studies, the 3D structure of the nucleon is now being revealed thanks to a huge International experimental and theoretical effort!
$>$ A rich phenomenology and surprising effects arise when intrinsic transverse degrees of freedom (spin, momentum) are not integrated out!
$>$ Revealing the complex QCD dynamics of nucleons requires high-precision multi-dimensional measurements: need large acceptance detectors, high luminosity, low systematics.

Conclusions

- After decades of collinear studies, the 3D structure of the nucleon is now being revealed thanks to a huge International experimental and theoretical effort!
$>$ A rich phenomenology and surprising effects arise when intrinsic transverse degrees of freedom (spin, momentum) are not integrated out!
$>$ Revealing the complex QCD dynamics of nucleons requires high-precision multi-dimensional measurements: need large acceptance detectors, high luminosity, low systematics.
$>$ New high-precision multi-dimensional results are expected in the near future from JLab12 and Amber, while in the next decade the EIC will complete the program with precise measurements in the poorly explored sea-quark and gluon domain at low- x and high- Q^{2} region.

Conclusions

> After decades of collinear studies, the 3D structure of the nucleon is now being revealed thanks to a huge International experimental and theoretical effort!
> A rich phenomenology and surprising effects arise when intrinsic transverse degrees of freedom (spin, momentum) are not integrated out!
$>$ Revealing the complex QCD dynamics of nucleons requires high-precision multi-dimensional measurements: need large acceptance detectors, high luminosity, low systematics.
$>$ New high-precision multi-dimensional results are expected in the near future from JLab12 and Amber, while in the next decade the EIC will complete the program with precise measurements in the poorly explored sea-quark and gluon domain at low- x and high- Q^{2} region.
$>$ A solid theoretical framework, sophisticated phenomenological global analyses and reliable theoretical models are necessary to interpret the physics beyond the experimental observables and pin down the underlying distribution functions (TMDs, GPDs,...).

Backup

Accessing GPDs

The extraction of GPDs from DVCS observables is not trivial:

- experimental observables are only sensitive to CFFs, which contain the GPDs integrated over x
- different observables exhibit different sensitivity to a single CFF
- a precise extraction of the various CFFs is only possible through model dependent global fits over different observables and complementary kinematic regions

For the extraction of the underlying GPDs data are compared with different classes of theoretical models:

- Vanderhaeghen-Guichon-Guidal (VGG)
- Goloskokov-Kroll (GK)
- Goldstein-Liuti (GL)
- Kumerički-Liuti-Müller (KM15) [provides best agreement with data]
- ...

The SIDIS cross section

- $\mathrm{F}_{\mathrm{XY}[\mathrm{Z}]}=$ structure function. $\mathrm{X}=$ beam, $\mathrm{Y}=$ target polarization,

Unpolarized
[$\mathrm{Z}=$ virtual-photon polarization]. $\mathrm{X}, \mathrm{Y} \in\{\mathrm{U}, \mathrm{L}, \mathrm{T}\}$
Longitudinally

- $\lambda_{\mathrm{e}}=$ helicity of the lepton beam

Transversely
$-\mathrm{S}_{\mathrm{L}}$ and $\mathrm{S}_{\mathrm{T}}=$ longitudinal and transverse target polarization
$-\varepsilon=$ ratio of longitudinal and transverse photon fluxes

The experimental observables

Spin-orbit correlations encoded in the TMDs induce observable azimuthal asymmetries in the distribution of the final-state hadrons.

E.g., for the case of SIDIS of an unpolarized lepton beam (U) on a transversely polarized nucleon (T) on can

1. construct a Single-Spin Asymmetry in each kinematic bin by reverting the target polarization
2. expand the asymmetry in a Fourier decomposition in terms of the relevant harmonics in ϕ and ϕ_{S}
3. extract the amplitude of each Fourier component (related to a specific combination of TMDs PDFs and FFs):

$$
\begin{aligned}
& A_{U T}\left(\phi, \phi_{S}\right)=\frac{1}{S_{T}} \frac{\sigma_{U T}^{\uparrow}-\sigma_{U T}^{\uparrow}}{\sigma_{U T}^{\uparrow}+\sigma_{U T}^{\uparrow}} \propto \boldsymbol{A}_{\boldsymbol{U} T}^{\sin \left(\boldsymbol{\phi}-\boldsymbol{\phi}_{S}\right)} \sin \left(\phi-\phi_{S}\right)+\boldsymbol{A}_{\boldsymbol{U T}}^{\sin \left(\boldsymbol{\phi}+\boldsymbol{\phi}_{S}\right)} \sin \left(\phi+\phi_{S}\right)+\cdots \\
& \boldsymbol{A}_{U T}^{\sin \left(\boldsymbol{\phi}-\boldsymbol{\phi}_{S}\right)} \propto \frac{F_{U T}^{\sin \left(\phi-\phi_{S}\right)}}{F_{U U}} \propto f_{1 T}^{\perp} \otimes D_{1} ; \quad \boldsymbol{A}_{\boldsymbol{U T}}^{\sin \left(\phi+\phi_{S}\right)} \propto \frac{F_{U T}^{\sin \left(\phi+\phi_{S}\right)}}{F_{U U}} \propto h_{1} \otimes H_{1}^{\perp} ; \ldots \\
& \boldsymbol{A}_{\boldsymbol{L U}}^{\sin (\boldsymbol{\phi})} \propto \frac{F_{L U}^{\sin (\phi)}}{F_{U U}} \propto \frac{M}{Q}\left[e H_{1}^{\perp}+f_{1} \widetilde{\boldsymbol{G}}^{\perp}+g^{\perp} D_{1}+h_{1}^{\perp} \widetilde{\boldsymbol{E}}\right] \quad \text { (sub-leading twist, related to quark-gluon-correlator) }
\end{aligned}
$$

The COMPASS DY Christmass present

$190 \mathrm{GeV} \pi^{-}$on a NH_{3} transv. pol target

Checking TMD Universality!

Integrated Sivers amplitude consistent with models including the expected sigh-change hypothesis (w.r.t. SIDIS)

The main ingredients from theory

- Factorization: proved for SIDIS \& DY (milestone!) \rightarrow allows interpretation of cross-section
- Universality: essential to interpret underlying physics in different processes;
- can be tested by comparing TMDs from different processes
- predicted sign change for T-odd TMDs in SIDIS/DY awaits solid experimental check!
- TMD Evolution: different schemes/implementations now available;
- Hard to apply to SIDIS data (low energy) where non-perturbative behaviour is dominant
- can be tested by comparing results from experiments at different energies:
$\left\langle Q^{2}\right\rangle_{\text {Hermes,Compass,JLab12 }} \sim 2-5 \mathrm{GeV}^{2} ;\left\langle Q^{2}\right\rangle_{\text {BesIII }} \sim 15 \mathrm{GeV}^{2} ;\left\langle Q^{2}\right\rangle_{\text {Belle } / \text { Babar }} \sim 100 \mathrm{GeV}^{2}$
- Phenomenological models: L-C constituent quark models, spectator models, χ QSM, etc
- Lattice QCD: recent results on Transversity, Sivers, B-M, worm-gear, tensor charge, ...

The main ingredients from phenomenology

- Sofisticated global analyses of SIDIS and $e^{+} e^{-}$data (multi-D) based on TMD-evolution
- Careful error propagation and advanced statistical tools
- Deconvolution of PDF \& FF: educated guess on k_{\perp} distribution, $\boldsymbol{P}_{\boldsymbol{h} \perp} /$ Bessel-weighting
- Knowledge of higher-twist contributions is crucial to interpret leading-twist observables
- Separation between CFR \& TFR (Fracture Functions, Berger criterion, x_{F}, \ldots)

