

First results on Timing Performance of Monolithic sensors with additional gain for the future ALICE 3 experiment

Giulia Gioachin on behalf of the ALICE and the ARCADIA Collaborations

Politecnico di Torino & INFN sezione di Torino

26-28 February 2024 - Trento

Table of contents

01

02

Introduction

The monolithic sensor with gain layer: MadPix

Monte Carlo Simulations

Results with Allpix² framework

03

Laboratory Tests

First laboratory results of passive structures

04

Conclusions

First conclusions and outlook

01 Introduction

Introduction — MC Simulations — Laboratory Tests — Conclusions -

Key features:

- exceptional pointing resolution
- excellent Particle IDentification (PID)
 - TOF ECal
 - RICH MID

Time-Of-Flight (TOF) system with silicon sensor \rightarrow electrons and hadrons ID at low p_{T}

Requirements:

- >>>> time resolution of 20 ps >>>> low material budget ~1-3% X₀ per layer
- >>>> low power density 50 mW/cm²

ALICE 3

https://cds.cern.ch/record/2803563

Introduction — MC Simulations — Laboratory Tests — Conclusions -

Monolithic sensors – ARCADIA Project

https://web.infn.it/ARCADIA/index.php/en

Advanced Readout CMOS Architectures with Depleted Integrated sensor Arrays

- Front-end electronics is embedded in the same silicon substrate -> Lower material budget + Cheaper
- **Fully depleted monolithic sensor** \rightarrow fast charge collection by drift \rightarrow good time performance
- **Large electrode** \rightarrow uniform \vec{E} necessary for timing measures

→ higher capacitance → Signal-to-Noise Ratio decreases

Lucio Pancheri

Monolithic CMOS Avalanche Detector PIXelated Prototype

First prototype with integrated electronics and gain layer

LFoundry in 110 nm commercial CMOS Process <u>Active thickness</u>: 48 μm

- Backside HV: allow <u>full depletion</u> → -25 V to -40 V
- Topside HV: manage the gain → 30 V to 50 V

8 matrices of 64 pixels each

64 x 2 analogue outputs

Pixels of 250 µm x 100 µm

📏 4 flavours

Thanks to M. Tornago

02 Monte Carlo Simulation

Allpix² tool

We are a bit far from the time resolution required by ALICE 3

 \rightarrow the electric field will be more uniform increasing the sensor width \rightarrow improves the time resolution

 \rightarrow thickness reduction (25 -15 µm) is needed to reach the 20ps target

O3 Laboratory Tests

Passive structures characterization

I(V) scan to study the sensor behavior

Introduction ——— MC Simulations ——— Laboratory Tests ——— Conclusions -

Laser Measurements

Optical characterization at UNITN (Trento)

- \rightarrow IR laser from the back of the sensor
- \rightarrow laser spot ~ 20 μ m

design

O4 Conclusions

Conclusions and Outlook

 \rightarrow A new innovative sensor is being designed and tested to meet the timing requirement of ALICE 3 Project

Monolithic sensors with additional gain

- → Using a Monte Carlo simulation tool Allpix²
 - \Rightarrow the electrical behavior and the timing performance are being simulated

A time resolution of about 50 ps is obtained \rightarrow thinning the sensor we could achieve the required 20 ps

Prototype for timing application in 110nm technology design in the ARCADIA project 📥 MadPix

→ Laboratory tests show that the sensors are **fully functional**

What's next?

- \rightarrow Simulation activities in parallel with tests
- → Short loop run will arrive in the next weeks: new sensors with increased gain to be tested

Spare

6° Incontro Nazionale di Fisica Nucleare INFN2024 - G. Gioachin

Monolithic sensors – ARCADIA Project

https://web.infn.it/ARCADIA/index.php/en

Advanced Readout CMOS Architectures with Depleted Integrated sensor Arrays

- Front-end electronics is embedded in the same silicon substrate -> Lower material budget + Cheaper
- **Fully depleted monolithic sensor** \rightarrow fast charge collection by drift \rightarrow good time performance
- **Large electrode** \rightarrow uniform \vec{E} necessary for timing measures

 \rightarrow higher capacitance \rightarrow **noise increases**

6° Incontro Nazionale di Fisica Nucleare INFN2024 - G. Gioachin