

SIPMS FOR DIRECT DETECTION OF CHARGED PARTICLES: RESPONSE AND TIMING PERFORMANCE FOR THE FUTURE ALICE 3 AT LHC

Bianca Sabiu, University and INFN Bologna on behalf of the ALICE Collaboration

Nuove frontiere della fisica nucleare fondamentale e applicata

FINCONTRO NAZIONALE DI FINCONTRO NAZIONALE DI 26 | 28 Febbraio 2024 TRENTO

Silicon PhotoMultipliers (SiPMs)

SPADs Single-Photon Avalanche Detectors in Geiger mode (gain 10⁶) above breakdown $V_{OV} = V_{bias} - V_{breakdown}$

Noise

SiPM: array of few mm² of 10²-10⁴ SPADs.

- ➤ avalanches triggered by thermally generated charged carriers → Dark Count Rate (DCR)
- ➤ avalanches generated because of the primary one → Cross Talk (CT)

SiPM performance studied when directly traversed by MIP ^{[1][2]:} expected: 1 SPAD fired (+CT) per event observed: several SPADs fired

SiPM are able to **directy detect charged particles**!

Cherenkov effect in the standard protection layer!

[1] Carnesecchi F., et al., JINST 17 P06007 (2022) [2] Carnesecchi F., et al., Eur. Phys. J. Plus **138**, 337 (2023)

SiPM under study

FBK NUV-HD-RH available SiPMs with different protection layers (resins):

- 1 mm Si resin (SR1)
- 1.5 mm Si resin (SR15)
- 1 mm Epoxy resin (ER1)
- Without resin (WR)

[3] Carnesecchi F., et al., Eur. Phys. J. Plus **138**, 788 (2023)

Active area	Pixel pitch	#SPADs	Fill Factor	V_{bd}
1 × 1 mm ²	20 µm	2444	72%	33.0±0.1 V

Beam test setup

Signal with and without protection layer

- SiPMs with protection layer → multi SPADs events → higher average signals wrt WR
- ➤ SiPM without protection layer mainly single SPAD events → up to 4-5 SPADs compatible with CT

High efficiency of SiPM with protection layer: >99% events with ≥3 SPADs firing at 2 V OV .

Timing in the center of the position scan

 $\sigma_{SiPM} \, VS \, OV$

SiPM with protection layer behave similarly

→ O(**20-30**) ps reached

σ_{SiPM} VS fired SPADs

- SiPM with protection layer \rightarrow improvement of σ_{SiPM} as $1/\sqrt{n_{\text{SPADS}}}$
- WR → affected by DC and CT

Intrinsic time resolution of around 20 ps for more than 5 SPADs firing, corresponding to >80% of total events!

Conclusions

Up to now established photon detectors usually coupled to scintillators or Cherenkov radiators for a variety of applications because of

- ✤ high efficiency
- insensitivity to magnetic fields
- Iow cost

now SiPM can **directly detect charged particles** showing:

increased efficiency, if compared to simple geometrical fill factor

time resolution improving with n fired SPADs

Moving SiPM from photosensors only to combined charged particle detectors, from space experiments to colliders!

BACK UP SLIDES

Lower beam momentum

A possible application of SiPMs: ALICE 3 outer TOF layer

A compact next-generation detector for the LHC to study high-energy proton-proton (pp) and nuclear (AA and pA) collisions^[5].

TOF specifications

	itof	οΤΟϜ	Forward TOF
Radius (m)	0.19	0.85	0.5-1.5
Surface (m ²)	1.5	30	14
Time resolution (ps)	20	20	20

[5] ALICE Collaboration, CERN -LHCC-2022-009/LHC-I-038 (2022)

Other candidates:

- CMOS MAPS with additional gain layer (CMOS LGADs)
- Low-Gain
 Avalanche
 Diodes
 (LGADs)

Backup slides

SIGNALS on oscilloscope

recovery time < 10 ns

Time resolution

Time resolution and % events

	SR15		SR1		ER1		WR	
n	σ (ps)	F_n (%)	σ (ps)	F_n (%)	σ (ps)	F_n (%)	σ (ps)	F_n (%)
1	-	~ 0	(43 ± 15)	~ 0	(53 ± 11)	$\lesssim 1$	(56 ± 4)	~ 81
2	(37 ± 5)	~ 0	(35 ± 4)	$\lesssim 1$	(43 ± 6)	~ 1	(78 ± 6)	~ 16
3	(30 ± 4)	$\lesssim 1$	(31 ± 4)	~ 1	(41 ± 6)	$\lesssim 3$	(84 ± 10)	~ 3
4	(23 ± 4)	${\lesssim}2$	(22 ± 3)	$\lesssim 3$	(31 ± 3)	~ 5	-	-
5	(18 ± 4)	$\lesssim 4$	(19 ± 4)	$\lesssim 5$	(25 ± 3)	~ 8	-	-
6	(17 ± 4)	~ 5	(17 ± 4)	$\lesssim 7$	(20 ± 3)	$\lesssim 12$	-	-
7	(14 ± 5)	$\lesssim 8$	(14 ± 3)	$\lesssim 10$	(18 ± 3)	$\lesssim 13$	-	-
8	(13 ± 4)	~ 9	(12 ± 4)	~ 11	(18 ± 4)	${\sim}10$	-	-
≥ 9	(14 ± 4)	~ 71	(13 ± 3)	~ 63	(17 ± 3)	$\sim \!\! 48$	-	-

Table 1: Time resolution with respect to a selected number n of firing SPADs of different type of SiPMs at 4 V OV. The percentage F_n is the rounded mean fraction of events with a signal corresponding to n SPADs with respect to the total. The last value of WR is intended to be for signals with ≥ 3 SPADs firing.

Cherenkov effect: energy dependence (I)

- selection based on timing (TOF) provided by the two LGADs
- TOF allows selection of protons

Understanding the direct detection of charged particles with SiPMs

WR position scan

Area of beam: 1 mm x 1 mm in agreement with LGADs triggered area.