

Mass spectra and electromagnetic decays of single bottom baryons

Ailier Rivero-Acosta

Hugo Garcia-Tecocoatzi, A. Giachino, R. Ramirez-Morales, E. Santopinto, and Carlos A. Vaquera-Araujo

February 26, 2024

Outline

Introduction

2 Motivation

Baryon wave functions
 Flavor wave functions

4 Mass spectra

5 Electromagnetic decay

Hadrons

- Quark Model: mesons (qq), baryons (qqq)
 Exotics: tetraquarks (qqqq), pentaquarks (qqqqq)
- Computation of mass spectra and electromagnetic decays of single bottom baryons

M. Gell-Mann, Phys. Lett. 8 (1964) 214

- The study of the mass spectra as well as the decay properties of single bottom baryons is relevant in hadron physics
- In order to produce such states higher energy and higher beam luminosity are required
- Only a few single bottom baryons have been discovered. Many of them have to be discovered
- Our work can guide experimentalists: giving the mass range and identifying the more suitable channels where to look for new states

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Experiments at LHC

Ailier Rivero-Acosta (DCI-UniGe-INFN)

크

イロト イヨト イヨト イヨト

Ground state single bottom baryons

Flavor wave functions

3-plet

$$\Xi_b^-, 1/2, -1/2 \rangle := \frac{1}{\sqrt{2}} (|dsb\rangle - |sdb\rangle) \tag{1}$$

$$|\Xi_b^0, 1/2, 1/2\rangle: = \frac{1}{\sqrt{2}}(|usb\rangle - |sub\rangle) \qquad (2)$$

$$|\Lambda_b^0,0,0\rangle: = \frac{1}{\sqrt{2}}(|udb\rangle - |dub\rangle)$$
(3)

6-plet

$$|\Omega_{b}^{-},0,0\rangle := |ssb\rangle$$

$$\Xi_{b}^{\prime-},1/2,-1/2\rangle := \frac{1}{\sqrt{2}}(|dsb\rangle+|sdb\rangle)$$

$$|\Xi_{b}^{\prime0},1/2,1/2\rangle := \frac{1}{\sqrt{2}}(|usb\rangle+|sub\rangle)$$

$$|\Sigma_{b}^{+},1,1\rangle := |uub\rangle$$

$$|\Sigma_{b}^{-},1,-1\rangle := |ddb\rangle$$

$$|\Sigma_{b}^{0},1,0\rangle := \frac{1}{\sqrt{2}}(|udb\rangle+|dub\rangle)$$

$$(4)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(6)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(8)$$

$$(9)$$

/ 4

Mass formula

The masses of the single bottom baryons are calculated as the eigenvalues of the Hamiltonian

$$H = H_{\text{h.o.}} + a_{\text{S}} \mathbf{S}_{\text{tot}}^{2} + a_{\text{SL}} \mathbf{S}_{\text{tot}} \cdot \mathbf{L}_{\text{tot}}$$
$$+ a_{\text{I}} \mathbf{I}^{2} + a_{\text{F}} \hat{\mathbf{C}}_{2} (SU_{\text{F}}(3))$$

$$E^{3q} = \sum_{i=1}^{3} m_i + \omega_\rho n_\rho + \omega_\lambda n_\lambda + a_{\rm S}[S_{\rm tot}(S_{\rm tot}+1)] \\ + a_{\rm SL} \frac{1}{2} \left[J(J+1) - L_{\rm tot}(L_{\rm tot}+1) - S_{\rm tot}(S_{\rm tot}+1) \right] \\ + a_{\rm I} [I(I+1)] + a_{\rm F} \frac{1}{3} [\rho(\rho+3) + q(q+3) + \rho q]$$
(10)

E. Santopinto, A. Giachino, J. Ferretti, H. Garcia-Tecocoatzi, M.A. Bedolla, R. Bijker, E. Ortiz-Pacheco, EPJC 79(12), 1012 (2019)

< ロ > < 同 > < 回 > < 回 >

Predictions for the Ω_b excited states

E. Santopinto, A. Giachino, J. Ferretti, H. García-Tecocoatzi, M.A. Bedolla, R. Bijker, and E. Ortiz-Pacheco, Eur. Phys. J. C (2019) 79:1012

LHCb Collaboration, PRL 124, 082002 (2020)

Observation of the new Ω_c states

H. Garcia-Tecocoatzi, A. Giachino, J. Li, A. Ramirez-Morales, and E. Santopinto, PRD 107, 034031 (2023)

LHCb Collaboration, PRL 131, 131902 (2023)

Mass spectra of Λ_b

H. Garcia-Tecocoatzi, A. Giachino, A. Ramirez-Morales, A. Rivero-Acosta, E. Santopinto, and C. Vaquera, e-Print: 2307.00505 [hep-ph] (2023)

A D N A P N A D N A D

Mass spectra of Ξ_b

H. Garcia-Tecocoatzi, A. Giachino, A. Ramirez-Morales, A. Rivero-Acosta, E. Santopinto, and C. Vaquera, e-Print: 2307.00505 [hep-ph] (2023)

A D N A P N A D N A D

Mass spectra of Σ_b

H. Garcia-Tecocoatzi, A. Giachino, A. Ramirez-Morales, A. Rivero-Acosta, E. Santopinto, and C. Vaquera, e-Print: 2307.00505 [hep-ph] (2023)

Mass spectra of Ξ'_{b}

H. Garcia-Tecocoatzi, A. Giachino, A. Ramirez-Morales, A. Rivero-Acosta, E. Santopinto, and C. Vaquera, e-Print: 2307.00505 [hep-ph] (2023)

Mass spectra of Ω_b

H. Garcia-Tecocoatzi, A. Giachino, A. Ramirez-Morales, A. Rivero-Acosta, E. Santopinto, and C. Vaquera, e-Print: 2307.00505 [hep-ph] (2023)

Electromagnetic decay

Electromagnetic interaction Hamiltonian

$$\mathcal{H}_{em} = 2\sqrt{\frac{\pi}{k_0}} \sum_{j=1}^{3} \mu_j \left[k s_{j,-} e^{-i\mathbf{k}\cdot\mathbf{r}_j} + \frac{1}{2} (p_{j,-} e^{-i\mathbf{k}\cdot\mathbf{r}_j} + e^{-i\mathbf{k}\cdot\mathbf{r}_j} p_{j,-}) \right]$$
(11)

$$k_0^2 = \frac{(M_A^2 - M_{A'}^2)^2}{2(M_A^2 + M_{A'}^2) + Q^2}$$
$$\mu_j = \frac{q_j}{2m_i}$$

Transition amplitude for a given helicity J_{A_z}

$$\mathcal{A}_{\textit{J}_{\textit{A}_{z}}} = \langle\textit{J}_{\textit{A}'},\textit{J}_{\textit{A}_{z}}-1|\mathcal{H}_{\text{em}}|\textit{J}_{\textit{A}},\textit{J}_{\textit{A}_{z}}\rangle$$

Partial decay widths of the electromagnetic transitions

$$\Gamma_{em}(A \to A' + \gamma) = 2\pi \rho \frac{1}{(2\pi)^3} \frac{2}{2J_A + 1} \sum_{J_{A_z} > 0} \left| \mathcal{A}_{J_{A_z}} \right|^2,$$
 (12)

In the rest frame of the initial baryon: $\rho = 4\pi \frac{E_{A'}}{M_A}k^2$

Energy of the final state:
$$E_{A'} = \sqrt{M_{A'}^2 + k^2}$$

The energy of the photon: $k = \frac{M_A^2 - M_{A'}^2}{2M_A}$

3 N K 3 N

Electromagnetic decay widths for Λ_b resonances

-						
$\mathcal{F}=\mathbf{\bar{3}}_{\mathrm{f}}$				$\Lambda_b^0 \gamma$	$\Sigma_b^0 \gamma$	$\Sigma_b^* \gamma$
$\Lambda_b(nnb)$	\mathbf{J}^P	$ l_{\lambda}, l_{\rho}, k_{\lambda}, k_{\rho}\rangle$	${}^{2S+1}L_J$	${\rm KeV}$	KeV	KeV
N = 0						
$\Lambda_b(5613)$	$\frac{1}{2}^{+}$	$ 0, 0, 0, 0\rangle$	${}^{2}S_{1/2}$	0	0	0
N = 1						
$\Lambda_b(5918)$	$\frac{1}{2}$	$ 1, 0, 0, 0\rangle$	$^{2}P_{1/2}$	64	0.4	0
$\Lambda_b(5924)$	$\frac{3}{2}$	$ 1, 0, 0, 0\rangle$	$^{2}P_{3/2}$	65	0.5	0.1
$\Lambda_b(6114)$	$\frac{1}{2}^{-}$	$ 0, 1, 0, 0\rangle$	${}^{2}P_{1/2}$	15	519	3
$\Lambda_b(6137)$	$\frac{1}{2}$	$ 0, 1, 0, 0\rangle$	${}^{4}P_{1/2}$	9	6	76
$\Lambda_b(6121)$	$\frac{3}{2}$ -	$ 0, 1, 0, 0\rangle$	${}^{2}P_{3/2}$	16	1025	3
$\Lambda_b(6143)$	$\frac{3}{2}$	$ 0, 1, 0, 0\rangle$	${}^{4}P_{3/2}$	25	17	382
$\Lambda_b(6153)$	$\frac{5}{2}$ -	$ 0, 1, 0, 0\rangle$	${}^{4}P_{5/2}$	17	12	1023

 $N = n_{\rho} + n_{\lambda}$, $n_{\rho(\lambda)} = 2k_{\rho(\lambda)} + l_{\rho(\lambda)}$, $l_{\rho(\lambda)}$ orbital angular momentum $k_{\rho(\lambda)}$ is the number of nodes (radial excitations)

H. Garcia-Tecocoatzi, A. Giachino, A. Ramirez-Morales, A. Rivero-Acosta, E. Santopinto, and C. Vaquera, e-Print: 2307.00505 [hep-ph] (2023)

イロト 不得 トイヨト イヨト ヨー ろくの

$\mathcal{F}=\mathbf{\bar{3}}_{\mathrm{f}}$				$\Xi_b^0 \gamma$	$\Xi_b^- \gamma$	$\Xi_b^{\prime 0} \gamma$	$\Xi_b^{\prime-}\gamma$	$\Xi_b^{*0} \gamma$	$\Xi_b^{*-}\gamma$
$\Xi_b(snb)$	\mathbf{J}^P	$ l_{\lambda},l_{\rho},k_{\lambda},k_{\rho}\rangle$	${}^{2S+1}L_J$	${\rm KeV}$	KeV	${\rm KeV}$	KeV	${\rm KeV}$	KeV
N = 0									
$\Xi_{b}(5806)$	$\frac{1}{2}^{+}$	$ 0, 0, 0, 0\rangle$	${}^{2}S_{1/2}$	0	0	0	0	0	0
N = 1									
$\Xi_{b}(6079)$	$\frac{1}{2}$	$ 1, 0, 0, 0\rangle$	$^{2}P_{1/2}$	122	126	1.1	0	0.2	0
$\Xi_{b}(6085)$	$\frac{3}{2}$ -	$ 1, 0, 0, 0\rangle$	$^{2}P_{3/2}$	125	126	1.3	0	0.2	0
$\Xi_{b}(6248)$	$\frac{1}{2}$	$ 0, 1, 0, 0\rangle$	$^{2}P_{1/2}$	19	28	494	9	2	0
$\Xi_{b}(6271)$	$\frac{1}{2}$	$ 0, 1, 0, 0\rangle$	$^{4}P_{1/2}$	11	17	5	0.1	75	1.4
$\Xi_{b}(6255)$	$\frac{3}{2}$ -	$ 0, 1, 0, 0\rangle$	$^{2}P_{3/2}$	20	29	950	17	3	0
$\Xi_{b}(6277)$	$\frac{3}{2}$ -	$ 0, 1, 0, 0\rangle$	$^{4}P_{3/2}$	33	49	14	0.3	363	7
$\Xi_{b}(6287)$	5-	$ 0, 1, 0, 0\rangle$	$^{4}P_{5/2}$	23	34	10	0.2	945	17

< ロ > < 同 > < 回 > < 回 >

$\mathcal{F}=6_{\rm f}$				$\Sigma_b^+ \gamma$	$\Sigma_b^0 \gamma$	$\Sigma_b^- \gamma$	$\Lambda_b^0 \gamma$	$\Sigma_b^{*+}\gamma$	$\Sigma_b^{*0} \gamma$	$\Sigma_b^{*-}\gamma$
$\Sigma_b(nnb)$	\mathbf{J}^P	$ l_{\lambda},l_{\rho},k_{\lambda},k_{\rho}\rangle$	${}^{2S+1}L_J$	KeV	${\rm KeV}$	${\rm KeV}$	${\rm KeV}$	${\rm KeV}$	KeV	KeV
N = 0										
$\Sigma_{b}(5804)$	$\frac{1}{2}^{+}$	$ 0, 0, 0, 0\rangle$	${}^{2}S_{1/2}$	0	0	0	150	0	0	0
$\Sigma_{b}(5832)$	$\frac{3}{2}^{+}$	$ 0, 0, 0, 0\rangle$	$^{4}S_{3/2}$	0.5	0	0.1	215	0	0	0
N = 1										
$\Sigma_b(6108)$	$\frac{1}{2}$	$ 1, 0, 0, 0\rangle$	${}^{2}P_{1/2}$	407	34	73	195	7	0.4	2
$\Sigma_b(6131)$	$\frac{1}{2}$	$ 1, 0, 0, 0\rangle$	${}^{4}P_{1/2}$	13	0.8	3	111	36	4	5
$\Sigma_b(6114)$	$\frac{3}{2}$ -	$ 1, 0, 0, 0\rangle$	$^{2}P_{3/2}$	1202	89	252	202	7	0.4	2
$\Sigma_b(6137)$	$\frac{3}{2}$ -	$ 1, 0, 0, 0\rangle$	$^{4}P_{3/2}$	40	2	10	321	316	26	59
$\Sigma_{b}(6147)$	<u>5</u> -	1,0,0,0)	$^{4}P_{5/2}$	29	2	7	217	1222	90	256
$\Sigma_b(6304)$	$\frac{1}{2}$ -	$ 0, 1, 0, 0\rangle$	$^{2}P_{1/2}$	247	15	62	424	103	6	26
$\Sigma_b(6311)$	3 - 2	$ 0, 1, 0, 0\rangle$	$^{2}P_{3/2}$	256	16	64	414	107	7	27

$\mathcal{F}=6_{f}$				$\Xi_b^0 \gamma$	$\Xi_b^- \gamma$	$\Xi_b^{\prime 0} \gamma$	$\Xi_b^{\prime-}\gamma$	$\Xi_b^{*0} \gamma$	$\Xi_b^{*-}\gamma$
$\Xi_b'(snb)$	\mathbf{J}^P	$ l_{\lambda},l_{\rho},k_{\lambda},k_{\rho}\rangle$	${}^{2S+1}L_J$	${\rm KeV}$	${\rm KeV}$	${\rm KeV}$	${\rm KeV}$	${\rm KeV}$	${\rm KeV}$
N = 0									
$\Xi_{b}^{\prime}(5925)$	1 ⁺	$ 0, 0, 0, 0\rangle$	${}^{2}S_{1/2}$	33	0.6	0	0	0	0
$\Xi_{b}^{\prime}(5953)$	$\frac{3}{2}^{+}$	$ 0, 0, 0, 0\rangle$	$^{4}S_{3/2}$	60	1.1	0.1	0.1	0	0
N = 1									
$\Xi_{b}^{\prime}(6198)$	$\frac{1}{2}^{-}$	1,0,0,0)	$^{2}P_{1/2}$	65	1.2	78.2	71.1	0.4	0.6
$\Xi_{b}^{\prime}(6220)$	$\frac{1}{2}^{-}$	$ 1, 0, 0, 0\rangle$	$^{4}P_{1/2}$	40	0.7	0.9	1.4	11	9
$\Xi_{b}^{\prime}(6204)$	$\frac{3}{2}$	$ 1, 0, 0, 0\rangle$	$^{2}P_{3/2}$	69	1.3	157	167	0.4	0.7
$\Xi_{b}^{\prime}(6226)$	$\frac{3}{2}$	$ 1, 0, 0, 0\rangle$	$^{4}P_{3/2}$	117	2	3	4	57	54
$\Xi_{b}^{\prime}(6237)$	5-	$ 1, 0, 0, 0\rangle$	$^{4}P_{5/2}$	83	1.5	2	3	157	168
$\Xi_{b}^{\prime}(6367)$	$\frac{1}{2}^{-}$	$ 0, 1, 0, 0\rangle$	$^{2}P_{1/2}$	644	12	19	28	7	11
$\Xi_{b}^{\prime}(6374)$	$\frac{3}{2}$ -	$ 0, 1, 0, 0\rangle$	$^{2}P_{3/2}$	637	12	20	29	8	12

< ロ > < 同 > < 回 > < 回 >

Electromagnetic decay widths for Ω_b resonances

$\mathcal{F}=6_{\rm f}$				$\Omega_b \gamma$	$\Omega_b^* \gamma$
$\Omega_b(ssb)$	\mathbf{J}^P	$ l_{\lambda},l_{\rho},k_{\lambda},k_{\rho}\rangle$	${}^{2S+1}L_J$	KeV	KeV
N = 0					
$\Omega_b(6064)$	$\frac{1}{2}^{+}$	$ 0, 0, 0, 0\rangle$	${}^{2}S_{1/2}$	0	0
$\Omega_{b}(6093)$	$\frac{3}{2}^{+}$	$ 0, 0, 0, 0\rangle$	${}^{4}S_{3/2}$	0.1	0
N = 1					
$\Omega_{b}(6315)$	$\frac{1}{2}$	$ 1, 0, 0, 0\rangle$	${}^{2}P_{1/2}$	51	0.2
$\Omega_{b}(6337)$	$\frac{1}{2}^{-}$	$ 1, 0, 0, 0\rangle$	$^{4}P_{1/2}$	0.5	8
$\Omega_{b}(6321)$	$\frac{3}{2}$	$ 1, 0, 0, 0\rangle$	$^{2}P_{3/2}$	99	0.2
$\Omega_{b}(6343)$	$\frac{3}{2}$ -	$ 1, 0, 0, 0\rangle$	$^{4}P_{3/2}$	1.7	38
$\Omega_b(6353)$	$\frac{5}{2}$ -	$ 1, 0, 0, 0\rangle$	${}^{4}P_{5/2}$	1.3	99
$\Omega_{b}(6465)$	$\frac{1}{2}$	$ 0, 1, 0, 0\rangle$	${}^{2}P_{1/2}$	12	4
$\Omega_b(6471)$	$\frac{3}{2}$ -	$ 0, 1, 0, 0\rangle$	$^{2}P_{3/2}$	12	5

H. Garcia-Tecocoatzi, A. Giachino, A. Ramirez-Morales, A. Rivero-Acosta, E. Santopinto, and C. Vaquera, e-Print: 2307.00505 [hep-ph] (2023)

Electromagnetic decay widths are particularly valuable in cases where the strong decays are suppressed

$\mathcal{F}=6_{\rm F}$				$\Xi_b K$	$\Xi_b'K$	$\Xi_b^* K$	$\Xi_b K$	$\Xi_b'K$	Ξ_b^*K	$\Omega_b \eta$	$\Omega_b^* \eta$	$\Omega_b \phi$	$\Omega_b^*\phi$	$\Omega_b \eta'$	$\Omega_b^* \eta'$	$\Xi_8 B$	$\Xi_{10}E$	F ^{Strong}
$\Omega_b(ssb)$	\mathbf{J}^P	$ l_{\lambda},l_{\rho},k_{\lambda},k_{\rho}\rangle$	${}^{2S+1}L_J$	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	
N = 0																		
$\Omega_b(6064)$	$\frac{1}{2}^{+}$	$ 0, 0, 0, 0\rangle$	${}^{2}S_{1/2}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\Omega_b(6093)$	$\frac{3}{2}^{+}$	$ 0, 0, 0, 0\rangle$	$^{4}S_{3/2}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

We suggest the $\Omega_b^* \to \Omega_b^- \gamma$ decay mode as a channel for the observation of the Ω_b^{*-} state

H. Garcia-Tecocoatzi, A. Giachino, A. Ramirez-Morales, A. Rivero-Acosta, E. Santopinto, and C. Vaquera, e-Print: 2307.00505 [hep-ph] (2023)

- We calculated the mass spectra single bottom baryons up to the D-wave states
- We performed calculations for the electromagnetic decay widths of single bottom baryons from P-wave states to ground states
- Our predictions for the masses of single bottom baryons exhibit good agreement with the available experimental data

Thank you for your attention!

Ailier Rivero-Acosta (DCI-UniGe-INFN)