A large-area prototype SiPM readout plane for the ePIC-dRICH detector at the EIC: realisation and beam test results

Nicola Rubini ${ }^{(1)(2)}$

on behalf of the dRICH collaboration
${ }^{(1)}$ INFN Bologna, ${ }^{(2)}$ University of Bologna 20 February 2024

Calorimetry:

e-endcap: $\mathrm{PbWO}_{4} \mathrm{EMCal}$ barrel: imaging EMCal outer barrel: HCal
h-endcap: finely segmented

Tracking:

1.7 T magnet Si-MAPS + MPGDs PID:

AC-LGAD TOF pfRICH hpDIRC dRICH

collision energy between 20 and 140 GeV
addition of the electron storage ring to RICH infrastructure
AGS
-

$\begin{array}{ll}\text { Front-end electronics featuring the ALCOR } & \begin{array}{l}\text { Aerogel tile } \\ \text { ASIC chip }\end{array} \\ \text { (not shown) }\end{array}$
2 peltier cells for subzero operating temperatures

Temperature sensors both under the sensors and on the peltiers
light-weight aluminium structure

Externally provided:
High voltage bias for sensors, low voltage power supply for electronics, T sensors piloting and read-out
liquid heat exchange for temperature control of hot-face of peltiers
incoming beam

Using the timing scintillators downstream our detector we can select signal hits in time with the incoming beam particle

We still have a few background hits that can be rejected with the average ring information
 $F(\mathrm{R}, \phi)=e^{\frac{(\mathrm{R}-f(\phi))^{2}}{\sigma^{2}}}$
$f(x)=R_{0}+r_{0} \cdot \sin (\phi-\theta)$
We can recover the ring center by the means of:
$x_{0}=-r_{0} \cdot \sin (\theta)$
$y_{0}=r_{0} \cdot \cos (\theta)$
Then, R_{0} is the ring radius

Using the timing scintillators downstream our detector we can select signal hits in time with the incoming beam particle

We still have a few background hits that can be rejected with the average ring information

$F(\mathrm{R}, \phi)=e^{\frac{(\mathrm{R}-f(\phi))^{2}}{\sigma^{2}}}$
$f(x)=R_{0}+r_{0} \cdot \sin (\phi$
We can recover the ring center by the means of:
$x_{0}=-r_{0} \cdot \sin (\theta)$

We can calculate the single-photon resolution by fitting this curve

VI INFN

Thank you!

