Open heavy-flavour production from the high-mass dilepton spectrum in pp collisions with ALICE

Sesto Incontro Nazionale di Fisica Nucleare (INFN2024) Trento 26/02/2024

Michele Pennisi for the ALICE Collaboration

- Heavy quarks are produced in initial hard-scattering processes in hadronic collisions
- Description of open heavy-flavor (i.e. bound states of charm or beauty quark with a light quark) production mechanism represents a challenge for theory
 - \hookrightarrow Test both the perturbative and non-perturbative regimes of QCD
 - \Rightarrow Fragmentation fraction: phenomenological functions parameterized on e^-e^+ data

- Heavy quarks are produced in initial hard-scattering processes in hadronic collisions
- Description of open heavy-flavor (i.e. bound states of charm or beauty quark with a light quark) production mechanism represents a challenge for theory
 - \hookrightarrow Test both the perturbative and non-perturbative regimes of QCD
 - \Rightarrow Fragmentation fraction: phenomenological functions parameterized on e^-e^+ data

With this analysis, the first measurement of charm and beauty quark pair production at forward rapidity at LHC energies is provided

A Large Ion Collider Experiment (Run2)

A Large Ion Collider Experiment (Run2)

Previous measurements for **charm** cross-section with dileptons in pp collisions:

- **ALICE**: low-mass dielectrons at midrapidity:
 - □ @13 TeV: *Phys.Lett.B* 788 (2019) 505-518
 - @7 Tev: <u>JHEP 09 (2018)</u>
 - © @5.02 TeV: *Phys.Rev.C* 102 (2020)

□ <u>Cacciari et al, JHEP 10 (2012) 137</u> (FONLL)

□ <u>Cacciari et al, JHEP 10 (2012) 137</u> (FONLL)

Previous measurements for **charm** cross-section with dileptons in pp collisions:

- **ALICE**: low-mass dielectrons at midrapidity:
 - □ @13 TeV: *Phys.Lett.B* 788 (2019) 505-518
 - @7 Tev: <u>JHEP 09 (2018)</u>
 - □ @5.02 TeV: *Phys.Rev.C* 102 (2020)

Previous measurements for **beauty** cross-section with dileptons in pp collisions:

- **ALICE**: low-mass dielectrons at midrapidity:
 - @13 TeV: <u>Phys.Lett.B 788 (2019) 505-518</u>
 - @7 Tev: <u>JHEP 09 (2018)</u>
 - □ @5.02 TeV: *Phys.Rev.C* 102 (2020)

Cacciari et al, JHEP 10 (2012) 137 (FONLL)

Previous measurements for **charm** cross-section with dileptons in pp collisions:

- ALICE: low-mass dielectrons at midrapidity:
 - @13 TeV: <u>Phys.Lett.B 788 (2019) 505-518</u>
 - @7 Tev: <u>JHEP 09 (2018)</u>
 - @5.02 TeV: <u>Phys.Rev.C 102 (2020)</u>

Previous measurements for **beauty** cross-section with dileptons in pp collisions:

- ALICE: low-mass dielectrons at midrapidity:
 - □ @13 TeV: *Phys.Lett.B* 788 (2019) 505-518
 - @7 Tev: <u>JHEP 09 (2018)</u>
 - © @5.02 TeV: *Phys.Rev.C* 102 (2020)
- **PHENIX**: low-mass dimuons 1.2< $|\eta|$ <2.2:
 - @200 GeV: <u>Phys.Rev.D 99 (2019)</u>

All the measurement are compatible with Fixed-Order-Next-Leading-Logarithm (FONLL) predictions, which represent the theoretical standard in open heavy-flavor calculations

^{□ &}lt;u>Cacciari et al, JHEP 10 (2012) 137</u> (FONLL)

Previous measurements for **charm** cross-section with dileptons in pp collisions:

- **ALICE**: low-mass dielectrons at midrapidity:
 - @13 TeV: <u>Phys.Lett.B 788 (2019) 505-518</u>
 - @7 Tev: <u>JHEP 09 (2018)</u>
 - © @5.02 TeV: <u>Phys.Rev.C 102 (2020)</u>

Previous measurements for **beauty** cross-section with dileptons in pp collisions:

- **ALICE**: low-mass dielectrons at midrapidity:
 - @13 TeV: <u>Phys.Lett.B 788 (2019) 505-518</u>
 - @7 Tev: <u>JHEP 09 (2018)</u>
 - @5.02 TeV: <u>Phys.Rev.C 102 (2020)</u>
- PHENIX: low-mass dimuons 1.2<|η|<2.2:
 □ @200 GeV: <u>Phys.Rev.D 99 (2019)</u>

Continuum regions (above **above** $m_{\mu\mu} = 4 \text{ GeV/}c^2$) are mainly populated by:

Semileptonic decays of pairs of open heavy-flavor (HF) hadrons

Combinatorial bkg. from light-flavor (LF) hadrons

Drell-Yan mechanism

Drell-Yan mechanism

Continuum regions (above **above** $m_{\mu\mu} = 4 \text{ GeV/c}^2$) are mainly populated by:

Semileptonic decays of pairs of open heavy-flavor (HF) hadrons

Combinatorial bkg. from light-flavor (LF) hadrons

especially pions and kaons $\label{eq:K-state} \begin{array}{l} \Pi \ -> \mu + v_{\mu} + cc. \\ K \ -> \mu + v_{\mu} + cc. \end{array}$

two possible bkg. sources:

μ⁺μ⁻ <- LF : both μ produced by LF hadron decay
 μ⁺μ⁻ <- LF,HF : one μ from HF, the other mu from LF

Drell-Yan mechanism

Continuum regions (above **above** $m_{\mu\mu} = 4 \text{ GeV/c}^2$) are mainly populated by:

Semileptonic decays of pairs of open heavy-flavor (HF) hadrons

Combinatorial bkg. from light-flavor (LF) hadrons

Drell-Yan mechanism

LF background dominates at low masses, its role becomes quickly negligible at high mass, allowing to study the HF quark production in almost not contaminated environment

Analysis outline

Analysis outline

Analysis outline

Estimation of charm and beauty yields from data

Estimation of charm and beauty yields from data

Estimation of charm and beauty yields from data

Template fit with the shapes of the main $\mu^+\mu^-$ sources in the continuum region

- Simultaneous unbinned fit to *m* and *p_T* data distributions with cocktail of HF sources from the HF-enriched PYTHIA8 simulation
- Good agreement between the fit and the data in the mass region studied
- Slight underestimation at high- p_T (6 < p_T < 10 GeV/c) due to a possible contribution from **Drell-Yan** (ongoing studies)

Few ingredients for estimating the cross section

How the cross section is computed:

 $\int d\sigma^{c\overline{c}/b\overline{b}}_{data}/dy = rac{N^{c\overline{c}/b\overline{b}}_{\mu\mu,data}}{N^{c\overline{c}/b\overline{b}}_{\mu\mu,MC}} imes d\sigma^{c\overline{c}/b\overline{b}}_{MC}/dy$

Few ingredients for estimating the cross section

How the cross section is computed:

 $d\sigma^{c\overline{c}/b\overline{b}}_{data}/dy = rac{N^{c\overline{c}/b\overline{b}}_{\mu\mu,data}}{N^{c\overline{c}/b\overline{b}}_{\mu\mu,MC}} imes d\sigma^{c\overline{c}/b\overline{b}}_{MC}/dy$

are the **charm** and **beauty** dimuon yields extracted from the fit and from the HF-enriched simulation, normalized to the number of equivalent MB events in data and MC, respectively

How the cross section is computed:

 $d\sigma^{c\overline{c}/b\overline{b}}_{data}/dy = rac{N^{c\overline{c}/b\overline{b}}_{\mu\mu,data}}{N^{c\overline{c}/b\overline{b}}_{\mu\mu,MC}} imes d\sigma^{c\overline{c}/b\overline{b}}_{MC}/dy$

are the **charm** and **beauty** dimuon yields extracted from the fit and from the HF-enriched simulation, normalized to the number of equivalent MB events in data and MC, respectively

are the **charm** and **beauty** quark pair cross sections in PYTHIA simulation, estimated as:

Few ingredients for estimating the cross section

How the cross section is computed:

 $\dot{oldsymbol{\delta}} \; d\sigma^{c\overline{c}/b\overline{b}}_{MC}/dy \propto N^{c\overline{c}/b\overline{b}}_{2.5 < y < 4}$

 $d\sigma^{c\overline{c}/b\overline{b}}_{data}/dy = rac{N^{c\overline{c}/bb}_{\mu\mu,data}}{N^{c\overline{c}/b\overline{b}}_{\mu\mu,MC}} imes d\sigma^{c\overline{c}/b\overline{b}}_{MC}/dy$

are the **charm** and **beauty** dimuon yields extracted from the fit and from the HF-enriched simulation, normalized to the number of equivalent MB events in data and MC, respectively

 $imes \sigma_{pp}^{PYTHIA}$,

charm and **beauty** quarks pairs produced at forward rapidity (2.5 < y < 4) x event

PYTHIA8 cross section of a inelastic pp collision

- Studying open heavy-flavor represents a fascinating challenge for theory, allowing to test different regimes of QCD
- ALICE unique experimental set-up provides the possibility of study HF in a broad rapidity interval
- First charm and beauty quark pairs cross section measurement at forward rapidity at the LHC energies
- Both forward and midrapidity results are in fair agreement with FONLL predictions

Michele Pennisi - Sesto Incontro Nazionale di Fisica Nucleare (INFN2024) - Trento 26/02/2024

Michele Pennisi - Sesto Incontro Nazionale di Fisica Nucleare (INFN2024) - Trento 26/02/2024

HF-cocktail using a Next-to-Leading-Order (NLO) calculation Introducing Drell-Yan contributions The contribution of Drell-Yan is currently investigated Preliminary studies at generator level using PYTHIA8 with Monash tune show promising possibilities of measuring DY cross-section by searching above $m = 20 \text{ GeV}/c^2$ Add the DY contribution to the POWHEG template DY cross section has never been measured at forward rapidity at LHC energies!

1 1 1

Additional Material

AVE

- ↔ Closure test with a toy MC
 - verify the goodness of the extraction procedure
 - test the fit procedure foreseen for real data
- ↔ Procedure:
 - ToyMC created with 100k dimuons using the fraction from PYTHIA HF enriched simulation
 - Unbinned fit (p_t and m simultaneously) to the TOY with the three shapes from MC (as done for data)
 - Useful to check the goodness of the pdf extraction and fit procedure foreseen for real data

<u>The number of charm and beauty dimuons obtained as</u> <u>the output of the fit compatible with the input given</u> <u>within the uncertainty</u>

The following systematic uncertainties have been evaluated:

	uncertainty on N° μμ <- c,c	uncertainty on N° μμ <- b,b
signal extraction	9%	28%
HF mixed fraction	0.7%	5.4%
trigger response	0.06%	0.04%
pythia tune (mode2)	8.7%	23%

	Common uncertainties
f _{Norm}	2.9%
MCH efficiency	2%
MTR efficiency	2%
Matching efficiency	1%

- Idea: modification the beauty and charm distributions to see the impact on the fit result
- ✤ <u>How</u>:
 - \succ generate a linear deviation contained in the 99% CL band of the PDF extraction fit
 - weight the MC distributions with the 2 linear deviations and extract 2 new sets of PDF
- Simultaneous unbinned fit in p_t and m with the 2 sets of modified PDFs (HF-mixed component PDF kept fixed to the original)

Up2Low

- → Variation on charm yield: 10.1%
- → Variation on beauty yield: 27.1%

Low2Up

- → Variation on charm yield: 10.9%
- → Variation on beauty yield: 30.1%

charm see in the back-up

Signal extraction systematic: some details

Signal extraction systematic: some details

- <u>Idea</u>: modification the beauty and charm distributions to see the impact on the fit result
- <u>How</u>:

*

generate a linear deviation contained in the 99% CL band of the PDF extraction fit

Trigger efficiency systematic: some details

→ the new weighted mass and pt dimuon distributions used to re-evaluate the charm and beauty yields

HF mixed systematic: some details

- Idea: HF-mixed component is purely combinatorial Creation of only-statistical toy-MC, not containing any information about the physics
- <u>How</u>: Varying the fraction of charm/beauty muons the % of HF mixed over total changes between 2 and 4% in the toy and in the MC either
- <u>Then</u>: normalization of HF mixed can be kept fixed when fitting the data

HF-mixed at 2%

 Systematic : charm and beauty yield obtained using different values of HF-mixed fraction

 $\frac{\text{Measurement of the differential Drell-Yan cross}}{\text{section in proton-proton collisions at }\sqrt{\text{s}= 13 \text{ TeV}}}$ $\frac{\text{with CMS}}{\text{Section Section}}$

Table 3: Summary of the measured values of $d\sigma/dm$ (pb/GeV) in the dimuon channel with the statistical (δ_{stat}), experimental (δ_{exp}) and theoretical (δ_{theo}) uncertainties, respectively. Here, δ_{tot} is the quadratic sum of the three components.

m(GeV)	$\frac{d\sigma}{dm}$ (pb/GeV)	δ_{stat}	δ_{exp}	$\delta_{ m theo}$	$\delta_{\rm tot}$
15-20	2.5×10^{2}	2.4×10^{0}	1.1×10^{1}	$1.4 imes 10^1$	1.8×10^{1}

 $\sigma_{DY \to \mu\mu}$ (15<m< 20 GeV) = 0.25 x 5 = 1.25 nb

 \rightarrow to be compared with 0.99 nb from PYTHIA

↔ How the cross section is computed:

↔ These two quantities have been calculated by using:

$$egin{cases} N^{car{c}/bar{b}^{fit}}_{\mu\mu\,,\,MB\,data} \Rightarrow & rac{N^{car{c}/bar{b}^{fit}}_{\mu\mu}}{N^{MB\,data}_{ev}} \; with \; N^{MB\,data}_{ev} = N^{CMUL}_{ev} imes f_{norm} \ N^{car{c}/bar{b}^{PYTHIA}}_{\mu\mu\,,\,MB\,data} \Rightarrow & rac{N^{car{c}/bar{b}^{FYTHIA}}_{ev}}{N^{MB\,PYTHIA}_{ev}} \; with \; N^{MB\,PYTHIA}_{ev} = N^{Sim}_{ev} imes Pythia_{eq} \end{cases}$$

↔ How the cross section is computed:

Is the charm and beauty yield extracted from the fit, normalized to number of equivalent minimum bias events

 $N^{car{c}/bar{b}^{PYTHIA}}_{\mu\mu\,,\,MB\,data}$

Is the number of charm and beauty dimuons in HF-enriched MC, normalized to the bumber of equivalent MB events in the simulation

↔ Obtaining:

.0.	$N^{car{c}/bar{b}^{PYTHIA}}_{\mu\mu}$	$N_{\mu\mu}^{car{c}/bar{b}^{fit}}$	$d\sigma^{meas}_{car{c}/bar{b}}/dy_{2.5 < y < 4}$
charm	1.682e+04	5.228e+04 ± 0.068e+04(stat.)	1.55 ± 0.02 (stat.) ± 0.17(syst.) mb
beauty	2.836e+04	1.928e+04 ± 0.068e+04(stat.)	24.6 ± 0.9(stat.) ± 7.5(syst.) µb