
Sesto Incontro Nazionale di Fisica Nucleare

Contribution ID: 58 Type: flash talk

Evolution of the mixing between single-particle and intruder configurations approaching the island of inversion at N=20: lifetimes in 37S

Monday, 26 February 2024 16:25 (5 minutes)

The disappearance of the N=20 shell closure in the so-called "island of inversion" around 32 Mg is one of the most striking examples of the strength of nucleon-nucleon correlations. In this region, the quadrupole-deformed intruder configuration (based on a multi-particle multi-hole configuration) becomes the ground state, subverting the expected shell ordering predicted by a harmonic oscillator plus spin-orbit term. The odd N=21 isotones therefore yield the possibility of a direct investigation of the mixing between single-particle and intruder states along the same chain, although experimental study of such nuclei becomes increasingly difficult with decreasing Z. Available spectroscopic evidence suggests that in 37 S the single-particle and collective intruder configurations are strongly connected, thus placing 37 S at the upper edge of the island of inversion. However, information on observables directly related to the wavefunction composition is rather scarce. The first excited state ($^{3/2}$ state at 646 keV) is the only one with a measured lifetime, but no transition probability has been firmly determined for intruder states, in particular those connected with strong branching ratios to the a priori spherical single-particle states.

A combined DSAM+RDDS measurement has been performed at LNL to deduce such transition probabilities, in particular for the $3/2^+$ state at 1397 keV (2p-1h nature) and the $7/2^-$ at 2023 keV (3p-2h nature), exploiting the full performance of the AGATA spectrometer in terms of energy and angular resolutions. The 37 S nucleus has been produced via the 36 S(d,p) reaction in inverse kinematics, detecting the recoiling protons in the annular charged-particle silicon detector SPIDER to obtain an accurate reconstruction of the excitation energy of 37 S. This contribution will present preliminary results which provide new insights into the structure of this nucleus.

Primary authors: GOTTARDO, Andrea (Istituto Nazionale di Fisica Nucleare); GALTAROSSA, Franco (Istituto Nazionale di Fisica Nucleare); VALIENTE DOBON, Jose' Javier (Istituto Nazionale di Fisica Nucleare); ZAGO, Luca (Istituto Nazionale di Fisica Nucleare)

Presenter: ZAGO, Luca (Istituto Nazionale di Fisica Nucleare)

Session Classification: Nuclear Structure and Reactions I