Search for Electron Capture of ¹⁷⁶Lu with a LYSO scintillator

<u>Nicolaidis Riccardo</u> ⁽¹⁾⁽²⁾, Nozzoli Francesco ⁽¹⁾⁽²⁾, Luigi Ernesto Ghezzer ⁽¹⁾⁽²⁾

⁽¹⁾ Physics Department, University of Trento

⁽²⁾ INFN-TIFPA

Sesto Incontro Nazionale di Fisica Nucleare 27/02/2024

Electron Capture of ¹⁷⁶Lu

- $^{176}Lu \rightarrow \beta$ decay to ^{176}Hf (~38 Gyr)
- Potentially unstable under EC (measured ⁴⁰K, ⁵⁰V and ¹³⁸La, missing ²³Te, ¹⁷⁶Lu and ¹⁸⁰Ta^{*})
- Lu/Hf ratio is an isotopic clock
- ¹⁷⁶Lu/¹⁷⁵Lu s-process thermometer in studies of stellar nucleosynthesis
- 7th and 5th forbidden decays (never been detected) the experimental investigation is a test for hypothetical violations of the Standard Model

Previous searches for the ¹⁷⁶Lu EC decay were performed by using a passive Lutetium source coupled to a HP-Ge detector.

EC decay: pure EC decay and forbiddenness

Electron capture is a process where a proton-rich nuclei absorbs an electron and emits a neutrino. Considering the nucleus size and the v energy, it is very hard that the v carries away more than $\frac{1}{2}h$

EC decay: visible energy in EC

Example: EC decay to 2^{+176} Yb (the less forbidden).

Signature of this transition is the 82 keV gamma from ¹⁷⁶Yb relaxation.

In addition:

Q' = (Q_{EC}- E_{v82}) = 27 keV (k-shell capture not allowed)

VISIBLE ENERGY in this decay:

- Pure EC decay (discrete energies):

Q -
$$E_v = E_{y82} + E_b < 82 + 10.5 \text{ keV}$$

E_b (L shell e

4

Detector: LYSO as active ¹⁷⁶Lu source

LYSO (Lutetium-yttrium oxyorthosilicate) scintillator coupled with a PMT in coincidence with a HP-Ge detector. Expected β -decay activity: 40Bq/g

The thin source geometry allows 82keV photon to escape the crystal and to be detected in a nearby HP-Ge.

LYSO measures X-rays and Auger e⁻ from the filling process of the vacancy or the possible radiative photons.

Active ¹⁷⁶Lu source: **powerful rejection of** β decay bkg.

LYSO (7.9 gr)

Hamamatsu R5946 PMT

Signal topology: 2⁺Yb EC decay (5th forbidden)

Example of background: β^{-} decay

8

Sesto Incontro Nazionale di Fisica Nucleare

Results

No evidence for $^{176} Yb^{*}$ 82.1 keV $\gamma\text{-ray}$ and 59.3 keV $K_{_{\rm B}}$ x-ray was found.

Upper limit on number of events N₈₂< 38 ± 105 provides an upper limit on the EC branching fraction:

$$B_{82} = \frac{(1 + \alpha_T^{82})N_{82}/\varepsilon_{88}}{(1 + \alpha_T^{88})N_{88}} < 2.6 \times 10^{-3} \quad B_{59} = \frac{N_{59}/(\varepsilon_{59}\varepsilon_{88}\varepsilon_{sel})}{(1 + \alpha_T^{88})N_{88}} < 6 \times 10^{-4}$$

 α_T^{82} =7.06 total electron conversion α_T^{88} =5.86 coefficients

Detection efficiency, ϵ_{88} , (relative to 88 keV) for x/ γ rays emitted by the LYSO source. The behavior is due to self-absorption of the LYSO crystal (63.3-keV Lu k-edge) combined with detection efficiency of the GC2020 HP-Ge

Conclusions

- Active source technique: LYSO as detector
- Background reduction (¹⁷⁶Lu β-decay and the HP-Ge intrinsic/external)
- No evidence for the EC process.
- Depending on the particular EC channel, we set upper limits to the ¹⁷⁶Lu EC branching fraction
- Estimations are 3-30 better than what obtained with previous measurements.

Electron capture channel	Branching ratio limit (95% C.L.)	Previous limit (68% C.L.) [5]
1s EC + 59 keV	0.035%	0.36%
1s REC + 59 keV	0.029%	
L EC + 82 keV	0.024%	0.45%
L/3s REC + 82 keV	0.026%	
$n_{>3s}$ REC + 82 keV	0.028%	
3p REC + 82 keV	0.036%	
3s/3p EC + 82 keV	0.027%	
3d EC + 82 keV	0.038%	
Any + 82 keV	0.26%	

https://doi.org/10.1103/PhysRevC.107.045504 https://doi.org/10.1051/epjconf/202329001002

