# Thermal fluctuations of the composition in quark nucleation

### Mirco Guerrini

#### collaborators: A. Drago (UniFe), G. Pagliara (UniFe) and A. Lavagno (PoliTo)

Sesto Incontro Nazionale di Fisica Nucleare



# **Deconfinement in astrophysical systems**



- Quarks d.o.f. expected at  $n_B \sim \text{few } n_0$
- Extreme densities reached in astrophysical phenomena related to **compact objects**
- **Deconfinement** could play a key role in astrophysical phenomena (e.g. BSGs CCSNe, *see Fischer et al. 2018*)

|                                 | $n_B/n_0$     | T [MeV]  | Ye        |
|---------------------------------|---------------|----------|-----------|
| Isolated NS                     | $10^{-8} - 8$ | $\sim$ 0 | 0.01-0.3  |
| Core Collapse Supernovae (CCSN) | $10^{-8} - 8$ | 0 - 50   | 0.25-0.55 |
| Proto NS (PNS)                  | $10^{-8} - 8$ | 0 - 50   | 0.01-0.3  |
| Binary NS Mergers (BNSM)        | $10^{-8} - 8$ | 0 - 100  | 0.01-0.6  |

### Nucleation: the first seed of a new stable phase

if  $\mu_H(P_H) > \mu_Q(P_Q) \Rightarrow H$  is a **metastable phase**  $\Rightarrow$  virtual drops of Q created



Formation of the first critical quark seed  $\Rightarrow$  deconfinement

### Method

State of the art (Bombaci et al. 2016)

- weak processes are too slow
- flavour composition is freezed

$$\mathcal{P}(P,T) = \mathcal{P}_{nuc}^{H_{\beta} \to Q^*}$$

#### Our approach (Guerrini et al. 2024)

• at  $T \neq 0$  hadronic composition **fluctuates** around the average values  $\left\langle y_i^{H_\beta} \right\rangle$ 

$$\mathcal{P}(P, T, \Delta y_i) = \mathcal{P}_{nuc}^{H^* \to Q^*} \times \mathcal{P}_{fluc}^{H_\beta \to H^*}$$



## Application to two flavour case



• (
$$etast)$$
:  $\Delta y_i=0$  ; ( $etaeta)$ :  $\Delta y_i$  such that  $y_i^{H^st}=y_i^{oldsymbol{Q}_eta}$ 

- P, T such that nucleation time  $\sim 1 ext{ s}$
- fluctuations of the hadronic composition:
  - small T: fluctuations role negligible
  - high T: nucleation starts at a much lower pressure

# Summary

#### Introduction

- exotic degrees of freedom expected at compact object densities
- nucleation is the starting point for the deconfinement process

State of the art

• flavour composition freezed during nucleation (Bombaci et al. 2016)

#### Method

- at finite T hadronic composition fluctuates around  $y_i^{H_\beta}$
- $\bullet\,$  one more step: I. Fluctuation in hadronic composition, II. Nucleation

#### Results

- nucleation starts at a much smaller pressure at high-intermediate  ${\sf T}$ 

### Outlooks

- Application to three flavours
- Conversion process of hadronic to quark matter
- Search observables for the deconfinement (e.g. AT2018cow delayed signal wrt SN)