Did a kilonova set off in our Galactic backyard 3.5 Myr ago?

Leonardo Chiesa University of Trento & TIFPA-INFN

in collaboration with A. Perego and F. M. Guercilena ApJL 962 L24 (2024)

Sesto Incontro Nazionale di Fisica Nucleare INFN2024 - Trento

February 26, 2024

r-process nucleosynthesis

• Half of heavy elements in the Universe from rapid neutron capture process (*r*-process) neutron-rich astrophysical sites!

- ★ Special types of supernovae (SN)
 ⇒ e.g. magneto-rotational, collapsars...
- ★ Binary Neutron Star mergers
 Black Hole Neutron Star mergers
 - \Rightarrow GW170817 + AT2017gfo

Live radioactive isotopes

• Live radioactive isotopes in meteorites, lunar samples, deep-sea sediments...

- → Isotopic signatures in deep-sea crust ≤ 10 Myr old
 - 60 Fe > usually associated with SN explosions
 - ²⁴⁴Pu \succ solely from *r*-process events

 244 Pu / 60 Fe atoms (t < 4.6 Myr) = (56 ± 6) ×10^{-6}

not compatible with a single BNS event

Wang+2021 Wang+2023 nearby SN with enhanced r-process production or alternative explanation

Live radioactive isotopes

Live radioactive isotopes in meteorites, lunar samples, deep-sea sediments...

- - usually associated with SN explosions
- solely from *r*-process events

Leonardo Chiesa

Nearby KN 3.5 Myr ago?

February 26, 2024

3

Live radioactive isotopes

• Live radioactive isotopes in meteorites, lunar samples, deep-sea sediments...

- → Isotopic signatures in deep-sea crust \leq 10 Myr old
 - 60 Fe > usually associated with SN explosions
 - ²⁴⁴Pu \succ solely from *r*-process events

v irradiation from NS remnant in a BNS merger boosts the production of light elements in the ejecta

BNS merger model with long-lived NS remnant could predict a much higher ⁶⁰Fe/²⁴⁴Pu ratio!

Leonardo Chiesa

3

Methods

Modeling of BNS ejecta with NR simulations (WhiskyTHC)

long-lived remnant (50-100 ms)

- EOS \Rightarrow DD2, BLh, SFHo, SLy4 ★
- neutrinos \Rightarrow LK + M0 scheme \star

Parametric nuclear reaction network calculations for Lagrangian trajectories

30 vrs post-merger

Leonardo Chiesa

Nearby KN 3.5 Myr ago?

0.0

February 26, 2024

Results

Results

Conclusions and outlook

²⁴⁴Pu and ⁶⁰Fe isotopic signatures compatible with a single (long-lived)
 BNS merger occurring ~ 3.5 Myr ago at ~ 80-150 pc from Earth

6

Backup slides

Binary neutron-star mergers

Nucleosynthesis models for ⁶⁰Fe / ²⁴⁴Pu

Different nsys models to explain the observed ⁶⁰Fe over ²⁴⁴Pu ratio:

- one-step scenario
 - → SN ✓
 - \rightarrow BNS (KN) \mathbf{X}
- two-step scenario
 - → ²⁴⁴Pu enrichment of LB from earlier BNS event

KN model limitations

Wang et al., *ApJ* (2021) Wang et al., *ApJ* (2023)

- 1. isotropic ejecta
- 2. combination of few BNS trajectories fitted to experimental data

|--|

BNS models

This Work							
#	EOS	q [-]	Vis	t _{end} (ms)	$M_{ m ej,dyn}$ $(10^{-3}M_{\odot})$	$\frac{\dot{M}_{\rm ej,wind}}{(10^{-1}M_{\odot}{\rm s}^{-1})}$	
1	BLh	1.0	\checkmark	91.8	1.36	2.34	
2	BLh	0.7	\checkmark	59.6	3.19	5.96	
3	DD2	1.0	\checkmark	113.0	1.47	1.97	
4	DD2 ^a	0.83	×	91.0	2.25	1.79	
5	SFHo	0.7	\checkmark	46.5	2.35	4.40	
6	SLy4	0.7	\checkmark	40.3	1.98	4.72	

 Table 1

 Summary of the Properties of the BNS Merger Models Considered in This Work

1. Massive NS remnant for ~100-200 ms \Rightarrow <u>dynamical</u> (²⁴⁴Pu) and <u>spiral-wave</u> (⁶⁰Fe)

≥ 50% of the events (Margalit & Metzger 2019)

2. Mid-high latitudes: $30^{\circ} \lesssim \tilde{\theta} \lesssim 50^{\circ} \Rightarrow \frac{\Delta\Omega}{4\pi} \approx 0.18 - 0.27$

⁶⁰Fe and ²⁴⁴Pu nucleosynthesis

- \star <u>BLh</u> models match the observed ratio at mid-high latitudes
- ★ DD2 models: spiral-wave wind is not rich enough in 60 Fe
- ★ SFHo and SLy4 models: amount of ²⁴⁴Pu is one order of magnitude larger

eonardo Chiesa	Nearby KN 3.5 Myr ago?	February 26, 2024
----------------	------------------------	-------------------

Explosion time uncertainty

• BNS ejecta expands after merger to ~100 pc within ~1 Myr

$$R_{\rm fade} \simeq 240 \,\mathrm{pc}$$

Bonetti et al. (2019) Beniamini et al. (2018)

isotopic ratio can accommodate such explosion time uncertainty (± 1 Myr)

Leonardo Chiesa	Nearby KN 3.5 Myr ago?	February 26, 2024
-----------------	------------------------	-------------------