

Dipartimento di Fisica e Astronomia Galileo Galilei

Laboratori Nazionali di Legnaro - INFN

Development of a β imaging detector tailored to Ag-111 for the ISOLPHARM project

D. Serafini, J. Delgado, M. Lunardon, V. Pavanello, R. Raffagnato, M. Giorato, E. Mariotti, A. Andrighetto on behalf of the ISOLPHARM collaboration

February 28th, 2024

Targeted Radionuclide Therapy

Preclinical Experiments

Requirements for uptake experiments:

- 0.1 1 mm spatial resolution
- Activity quantification

Created in BioRender.com bio

Description of the Device

- It will consist of 4 or 8 **ALPIDE chips** arranged in a flat geometry •
- ALPIDE is a monolithic active pixel sensor (MAPS) originally developed ۲ for the Inner Tracking System of the ALICE experiment at CERN

- 1.5cm \times 3cm \times 50 μ m
- 1024 x 512 sensitive pixels
- 28μm × 28μm × 50μm

- Highly-Doped N-Wells: charge is collected
- Epitaxial Layer: where ionizing particles generate electron-hole pairs
- Substrate Layer: support to the detector

Data Acquisition Test

Sr-90 β emission

• 196 keV (100%)

First measurements conducted with ALPIDE:

- Dedicated **firmware** mounted on the detector
- Preliminary data acquisition with ⁹⁰Sr source

Geant4 Simulation

Cell geometry:

- Aqueous spherical cells (10 µm radius)
- Inside the cell volume, ¹¹¹Ag undergoes β decay
- Source geometry:

hydrogel matrix

10 cells dispersed in

- ISOLPHARM project aims to develop Ag-111 based radiopharmaceuticals
- A β detector exploiting ALPIDE chip is being developed for in-vitro experiments
- The detector was simulated using Geant4 toolkit
- The expected spatial resolution for 2D cell culture scenario is 0.2 mm

- B. Abelev et al and (The ALICE Collaboration) 2014 J. Phys. G: Nucl. Part. Phys. 41 087002, • https://www.doi.org/10.1088/0954-3899/41/8/087002
- M. Suljic, Study of Monolithic Active Pixel Sensors for the Upgrade of the ALICE Inner Tracking • System, https://cds.cern.ch/record/2303618
- V. Pavanello, Performance study of a novel 2D imaging beta detector for medical applications, M. • Sc. Thesis, https://hdl.handle.net/20.500.12608/51901

environment through Monte Carlo simulations, using **Geant4** software.

The ISOLPHARM collaboration

Thank you

BACK-UP SLIDES

Advancements made in 2023

1. The detector in its final design (2x2 configuration)

considered around 50 um

2. Biological sources represented by both traditional **cell** cultures and hydrogel-based cultures. ¹¹¹Ag deposited in each cell 3D cell culture Planar cell culture cells in suspension, typical distance cell-detector considered around 500 um cells on the bottom of the box. typical distance cell-detector

- Sealed box only exposes the sensitive part of the chips, the power supply and data I/O connectors
- Option to set up upside down the sensitive part
- Movements along vertical and horizontal axes \rightarrow **scanner** mode
- The movement will be **automated**, with micrometric adjustments

Vertical mounting:

• PCB + chips \rightarrow support and interfacing second board \rightarrow commercial FPGA board

Geant4 simulation

Cell geometry:

- Aqueous spherical cells (10 µm radius)
- Inside the cell volume, ¹¹¹Ag undergoes β decay

Source geometry:

- 2D planar cell culture
- 3D hydrogel scaffold

Conduct simulations with a **collimator** to assess possible **spatial resolution improvements** for radioactive sources at millimetric distance from the detector

Geant4 validation

Figure 4.19: Comparison between the profiles of the original and simulated ⁹⁰Sr images. The developed GEANT4 simulation replicates the setup of tests performed with the ALPIDE detector using a ⁹⁰Sr source. The source is positioned 2 mm away from the detector surface. The profiles are fitted using a super-Gaussian distribution (generalized Gaussian function).

