

1

A novel SiPM-based aerogel RICH detector for the future ALICE 3 apparatus at LHC

Nicola Nicassio (University and INFN Bari) for the ALICE Collaboration INFN2024, February 26-28, 2024

Nicola Nicassio – University and INFN Bari, Italy

Outline

Detector concept

Simulation studies

Test beam results

The ALICE 3 upgrade

ALICE 3 motivation and concept

- ALICE main goal: access the dynamics of the strongly interacting matter produced in heavy-ion collisions
- Fundamental questions will remain open after LHC Run 4, demanding for a next-generation experiment
- Letter of Intent for ALICE 3 submitted in March 2022
 <u>ALICE CERN-LHCC-2022-009</u>
- Scoping document submission by March-April 2024

Processes	Observables			
Early stages	Dilepton and photon production and flow			
Diffusion	Heavy-flavour correlations and flow			
Hadronization	Multi-charm baryons, quarkonia			
	Pointing resolution: \approx 10 μm at 200 MeV/c			
Detector	Tracking relative p_T resolution: \approx 1-2 %			
requirements	Extensive identification of e, μ , π , K, p, γ			
	Large pseudorapidity coverage: $ \eta < 4$			

ALICE 3 barrel RICH motivation

ALICE 3 charged PID systems

- Time-Of-Flight: iTOF, oTOF, fTOF
- **Ring-Imaging Cherenkov**: bRICH, fRICH
- **EM Calorimeter**: Barrel + forward ECAL
- Muon Identifier Detector: Barrel MID

Let's focus on the bRICH

bRICH motivation

- Extend charged PID beyond the TOF limits
 - π/e in the p range 0.5 2.0 GeV/c
 - K/ π in the p range 2.0 10.0 GeV/c
 - p/K in the p range 4.0 16.0 GeV/c
- → Achieved using aerogel radiator with n \approx 1.03 + requiring angular resolution $\sigma_{\theta_{ch}} \approx$ 1.5 mrad

bRICH technology

Aerogel radiator (n=1.03, L=2 cm)

- Lattice of SiO₂ grains filled with trapped air
- Tunable index in the range 1.006-1.250
- Transmittance dominated by Rayleigh scattering
 - Transparent in the visible, opaque in the UV -

SiPM-based photodetector

- Sensors must be sensitive to visible light
- Operation in magnetic field
- Granularity from 3x3 to 1x1 mm²
- Simulations: HPK 13360-3050CS SiPMs

A	erogel n	βth	Momentum threshold [GeV/c]					
			е	μ	π	K	р	
	1.01	0.99009901	0.0036	0.7453	0.9845	3.4821	6.6181	
	1.02	0.98039216	0.0025	0.5257	0.6944	2.4561	4.6681	
	1.03	0.97087379	0.0021	0.4281	0.5656	2.0005	3.8021	
	1.04	0.96153846	0.0018	0.3699	0.4886	1.7282	3.2846	
	1.05	0.95238095	0.0016	0.3300	0.4359	1.5420	2.9307	

400

300

200

50

Photon detection efficiency (%) 0 07 07 07 05 05

Projective bRICH layout

Assumptions

- All tiles oriented toward nominal interaction point
- Full coverage to charged particles without overlaps
- Trapezoidal tile profile to maximize the acceptance

Implementation

- 24 sectors in z
- 36 modules in $r\varphi$ for each sector
- <u>Photosensitive surface: ≈ 30 m²</u>

bRICH performance vs η

3x3mm²

 $-2x2mm^2$

🔶 1x1mm²

1.0 1.5

Pseudorapidity

2.0

Number of detected photons

- $N_{p.e.} \propto \sin^2 \theta_c \oplus \text{phot. acceptance}$
 - Remember: $\cos \theta_c = 1/n\beta$
- Ph. absorbing walls between sectors
 → Loss of some photons boundaries

BASELINE

 π^{\pm} at p = 10 GeV/c, B = 2 T

-1.5 -1.0 -0.5 0.0 0.5

Number of detected photons

45|

40

35

30 25

15F

-2.0

Projective

Abs. walls

Single photon resolution

- Expected: $\sigma_{\theta_c}^{p.e.} = \sqrt{\sum_i \sigma_{\theta_c}^2(i)}$
 - *i* = chrom, geom, pixel, tracking
- Worst $\sigma_{\theta_c}^{p.e.}$ at $\eta \approx 0.9$ for sectors where the gap thickness is smaller

Ring angular resolution

• Expected:
$$\sigma_{\theta_c}^{ring} = \frac{\sigma_{\theta_c}^{p.e.}}{\sqrt{N_{p.e}}}$$

- Excellent $\sigma_{ heta_c}^{ring}$ for $|\eta| < 2$
- Minor worsening at $\eta \approx 0.9$

bRICH PID purity in p-p and Pb-Pb

Angle reconstruction

- Based on Hough Transform method
- Timing cut on hit-track matching
- HTM $N_{\rm ph,min}$ cut on clustered hits

Particle identification

Bayesian approach + probability cut

Background

E ¹⁵⁰⁻ × 100-

-50-

-100-

-150 150

Ylomj

100

50

-50

-100

-150 -400 -300

- Photons emitted by different tracks
- Aerogel Rayleigh scattered photons
- SiPM dark count hits (50 kHz/mm²)

-100

-200

p-p , $c\overline{c}$ biased, $\sqrt{s_{NN}}=14$ TeV, Pythia8, B = 2 T

Nicola Nicassio – University and INFN Bari, Italy

R&D activities: aerogel radiator

Baseline bRICH option

• Tiles from Aerogel Factory Co. LTD (Chiba, JP)

Aerogel characterization

- Refractive index uniformity and reproducibility
- Transmittance, Rayleigh scattering, absorption
- Tile dimensional and shape characterization

For details: see contribution by Anna Rita Altamura

Nicola Nicassio – University and INFN Bari, Italy

λ [nm]

R&D activities: photon detector

Simulations based on commercial SiPMs

• Custom devices already available with better PDE, DCR

SiPM R&D key topics

- Fill factor and timing: active quenching, SPAD layout
- PDE improvement: E-field engineering, A/R coating
- DCR reduction: E-field engineering, single SPAD access
- Radiation hardness: SPAD layout, cooling, annealing

SiPM packaging option

2.5D packaging (using passive silicon interposer)
 Cooling/annealing circuit embedding in silicon interposer

Fresnel reflections at Si interface: A/R coating and texturing

Option: MIP timing using bRICH SiPMs

Principle of operation

- Introduction of Cherenkov radiator coupled to SiPM layer
- Use SiPM clusters due to radiator photons for MIP timing

Possibility of achieving time resolutions down to \approx 20 ps with \approx 100 % charged particle detection efficiency !!!

Radiator choice

See also talks and posters by Bianca Sabiu, Giulia Gioachin

• Use high refractive index material to minimize Cherenkov thresholds and to enhance both photon yield and spread

Assuming PDE of S13360-**50CS SiPMs at recommended overvoltage

2022/2023 beam tests @ PS/T10

In collaboration with Mario Nicola Mazziotta, Leonarda Lorusso, Giuliana Panzarini, Roberta Pillera et al. (INFN Bari) ALICE

Angular measurements

- **Radiator**: Aerogel, n = 1.03, $T_r = 2$ cm
- **Gap**: Argon, n = 1.00028, T_g = 23.0 cm
- **Sensors**: 8 x HPK S13552, V_{ov} = 4.6 V

Timing measurements

- HPK S13361-3075 + 1mm quartz/MgF₂
- HPK S13361-3075 + no window
- HPK S13361-1350 + 2mm quartz

Ancillatory detectors

- Triggering: Beam plastic scintillator
- Tracking: 2 X-Y fiber tracker module
 - 1 mm read-out pitch

SiPM cooling: Water chiller + 5 Peltier devices \Rightarrow Measured operation temperature in [-5°,0°]

Beam test Front-End and DAQ

Front-End

- 4 PETIROC 2A ASICs:
 - 32 front-end channels
 - PA time jitter about 45 ps (>4 p.e.)
 - TDC for time measurements 37 ps LSB
 - ADC for charge measurements 10 bit
 - 32 digital outputs for triggering

FPGA

- I/O data management
- Trigger
- Coincidence

SiPM Bias Module

- SiPM bias voltage regulation up to 80 V

NIM I/O

Trigger

Ethernet port

- Data I/O to a remote host

Angular resolution measurements

Analysis strategy

<u>Event selection</u>

Requiring signal in a fiducial area of the fiber tracker planes (T0,T1) and the SiPM matrices (M0,M1)

<u>Charged particle tracking</u>

4-points straight line fit to extract the track position in the middle of aerogel and track director cosines

- Single photon Cherenkov angle Hit geometric backpropagation from all hit positions to the median plane of the aerogel tile
- <u>Time cut for DCR suppression</u>

 $\left|t_{hit,array} - t_{max-q,M0}\right| < 5 \text{ ns}$

 Fit model for angular distribution
 Assuming Gaussian signals and template bkg. distribution from time-uncorrelated hits w.r.t. MIP

We measured a single photon resolution $\sigma_{\theta} \approx 3.8$ mrad

Charged particle timing measurements

ALICE

Analysis strategy

Event selection

Signal in fiducial area of tracker (T0,T1) and matrices (M0,M1)

- Fine time calibration Channel-by-channel level
- <u>Channel intrinsic offset correction</u> Different delays for different SiPMs: routing, cabling, etc.
- <u>Time walk correction</u>

Intrinsic offset between signals with a different number of p.e.

<u>Timing operations</u>

Comparing M0 and M1 response Extrapolating M0 / M1 resolution

Note: The results on timing include both the intrinsic SiPM resolution and the electronics (jitter, TDC, etc.)

Nicola Nicassio – University and INFN Bari, Italy

Conclusions

Summary

- Simulation studies show that the **proposed bRICH** fulfills the ALICE 3 PID requirements, in particular in the extreme high-multiplicity environment expected in central Pb-Pb events
- Breakthrough concept of **TOF measurements** using bRICH SiPMs is currently under study and very promising results on the achievable arrival time resolution have been obtained
- **R&Ds**: Aerogel and SiPM characterization, radiation hardness, bRICH mechanics, cooling

Outlook

- **2024-2025**: Selection of technologies, small-scale prototypes
- **2026-2027**: Large-scale prototypes, Technical Design Report

Thank you for your attention!

Thank you for your attention

Nicola.Nicassio@ba.infn.it