



# Development of the ALICE Inner Tracking System 3

## **Riccardo Ricci**

University and INFN, Salerno

On behalf of the ALICE Collaboration



INFN2024 - Sesto Incontro Nazionale di Fisica Nucleare

Trento - Sala della Cooperazione, 27/02/2024





Built using **ALPIDE**, a Silicon pixel chip based on 180 nm Monolithic Active Pixel Sensor (MAPS) 2

ALICE

## The ITS3 - a bent vertex detector

- Ready for LHC RUN 4 mounted during LS3
- Built using wafer-scale MAPS sensors, fabricated using stitching
- Thinned  $\leq$  50  $\mu$ m, when Si is flexible
- Mechanically held in place thanks to carbon foam ribs
- **Bent** to the target radius (18 mm, **closer** to the Interaction Point thanks to the new beam-pipe at 16 mm)
- Better tracking efficiency, less power consumption
- ITS3 will replace 3 innermost ALICE Inner Tracking System 2 (ITS2) layers with only **6 sensors** 26 cm long





## Material budget contribution in the ITS3



Development of the ALICE Inner Tracking System 3 | Riccardo Ricci

## **Performance of the ITS3**



5



- less material budget, closer to the IP, less inhomogeneities
- impact-parameter resolution improved by a factor two with respect to the current ITS2



Development of the ALICE Inner Tracking System 3 | Riccardo Ricci



Development of the ALICE Inner Tracking System 3 | Riccardo Ricci

## **Beam tests - setup and analysis**

Reference arm

Beam



- After characterisation in laboratory
  - $\rightarrow$  ionising particle beam
- **Telescope**: 5 or 6 reference ALPIDE chip planes for track reconstruction
- Trigger: chip or scintillator depending on specific purpose
- **Goal**: measure tracking efficiency and spatial resolution performance of the sensor

ALPIDE **TESTBEAM TELESCOPE** TRG

DUT

Trigger

Reference arm

- Data analysis performed using *Corryvreckan\**
  - software written in C++
  - used for test beam data reconstruction and analysis
  - it performs offline event building also in high complexity data-taking conditions

\*<u>https://gitlab.cern.ch/corryvreckan/corryvreckan</u>

**Detection efficiency:** 

# tracks<sub>1 ass.cluster, DUT</sub>  $\epsilon$ total # tracks<sub>DUT</sub>

Development of the ALICE Inner Tracking System 3 | Riccardo Ricci

# **Sensor bending**

- Bending procedure has been tested in different ways and at different radii on ITS2 ALPIDEs
- No degradation  $\rightarrow$  They work as **flat** chips
- The down-scale model of the final ITS3 was produced with six bent ALPIDEs  $\rightarrow \mu ITS3$
- Results from beam tests show no differences in performance among different bending radii







# **New Monolythic Active Pixel Sensor designs**





- Based on **MAPS** and **TPSCo 65 nm CMOS** technology
- $\bullet$  50  $\mu m$  thick
- Three different chip designs for

characterization and qualification purposes:

- 1. Standard type
- 2. Modified type
- 3. Modified type with gap

Development of the ALICE Inner Tracking System 3 | Riccardo Ricci

# **Technology validation - MLR1**



Multi Layer Reticle 1 - First submission with the TPSCo 65 nm MAPS technology for the ITS3 Goal  $\rightarrow$  test and qualification (long R&D work done together with CERN EP R&D WP1, WP2)

**APTS** - Analog Pixel Test Structure



- matrix: 6x6 pixels
- readout: direct analogue
- readout of central 4x4
- **pitch**: 10, 15, 20, 25 μm
- **design**: standard, modified, modified-with-gap

### **DPTS** - Digital Pixel Test Structure



- matrix: 32x32 pixels
- readout: digital with ToT
- **pitch**: 10, 15, 20, 25 μm
- **design**: modified with gap

### **CE65 -** Circuit Exploratoire 65 nm



- matrix: 64×32 or 48×32
- readout: Rolling shutter readout (down to 50 μs integration time
- **pitch**: 15 μm or 25 μm
- **design**: standard, modified, modified with gap

### **Intensive characterization campaign:**

Validation in terms of charge collection efficiency, detection efficiency and radiation hardness

Development of the ALICE Inner Tracking System 3 | Riccardo Ricci

## **Detection Efficiency - APTS** Design comparison





# **Detection Efficiency - DPTS**

**Modified-with-gap design** 





Development of the ALICE Inner Tracking System 3 | Riccardo Ricci

# Sensor stitching

First large-scale stitched sensor, MOnolithic Stitched Sensor (MOSS) received on June 2023:

- Repeated identical but functionally independent units, with in-silicon interconnections and peripheral structures of the sensor
- Laboratory tests: once checked the basic functionalities, full characterization to assess yield of different sensor sections







# Sensor stitching

First stitched unit **MO**nolithic **S**titched **S**ensor (**MOSS**) received or June 2023:

- Repeated identical but functionally independent units, with in-silicon interconnections and peripheral structures of the sensor
- Laboratory tests: once checked the basic functionalities, full characterization to assess yield of different sensor sections
- First beam tests @CERN PS and SPS: system fully functional, analysis ongoing







## Summary



ITS3 will be installed during LS3 to be ready for LHC Run 4 (2029-2032). The sensor qualification has shown that:

- Bent sensors show the same performance of flat chips for all the radii values of the foreseen final ITS3 structure
- **65 nm** technology has been validated for the use in ITS3:
  - **modified-with-gap** design is more efficient compared to the modified and standard design
  - all the tested chips show detection excellent efficiency over large threshold range term for the ITS3 radiation hardness requirements (10 kGy +  $10^{13}$  1 MeV n<sub>eq</sub> /cm)
- **Stitching** qualification is ongoing:
  - First studies on first large-scale stitched sensors performance (ER1) shows promising result
    - $\rightarrow$  to be extended on more chip and wafers

### Next steps

- Continue and finalize studies on ER1 chips
- 2nd production of stitched sensors by 2025





# Thanks for your attention







## **ALICE - A Large Ion Collider Experiment**



- ALICE is one of the main 4 experiments at the Large Hadron Collider (LHC) at CERN
- Focused on heavy-ion interactions physics to study Quark-Gluon Plasma (QGP)
  - The collision product is a "fireball" which should reproduce:
    early Universe evolution stages
    transition from partonic deconfined matter into confined hadrons (few µs after the Big Bang)

18

## **ITS3 - mechanical structure**

Many tests ongoing to check mechanical stability, final bending procedure, thermal variations, air cooling... configuration...



SUPPORT







Courtesy of ITS3 WP5

ENGINEERING MODEL INCLUDING THE THREE LAYERS



Development of the ALICE Inner Tracking System 3 | Riccardo Ricci





# **ITS3 - air cooling implementation**

Air cooling avoids introducing structures in the active region  $\rightarrow$  keeps the material budget low

These requirements must be reached:

- Sensor operating temperature <30°C
- **Temperature gradient** in the matrix region **<5°C**
- Sensor power density < 40 mW/cm2
- Placed in a custom wind tunnel, thermal and mechanical properties are being studied



Courtesy of ITS3 WP5





INFN2024 - Sesto Incontro Nazionale di Fisica Nucleare

20

## **Detection Efficiency - APTS** Standard design



21

Efficiency changes depending on



Development of the ALICE Inner Tracking System 3 | Riccardo Ricci

## **Detection Efficiency - APTS** Modified design



Development of the ALICE Inner Tracking System 3 | Riccardo Ricci





## **Detection Efficiency - APTS** Modified-with-gap design



Development of the ALICE Inner Tracking System 3 | Riccardo Ricci

INFN2024 - Sesto Incontro Nazionale di Fisica Nucleare

23



## **Spatial resolution - APTS** Modified-with-gap design





24

# **Benefits in ALICE measurements from ITS3**

ALICI

• Low-mass dileptons

Beauty-strange mesons

- exclusive reconstruction of  $B_s^{0}$
- non-prompt  $D_s^+$  (50% from  $B^{0,+}$  and 50% from  $B_s^{0}$ )
- Beauty baryons
  - non-prompt  $\Lambda_c^+$
  - $\circ$  exclusive reconstruction of  $\Lambda_{\rm h}^{0}$
- Charm strange and multi-strange baryons
  - $\circ$   $\Xi_{c}^{0}$  (cds),  $\Xi_{c}^{+}$  (cus),  $\Omega_{c}^{0}$  (css)
- Searches for light charm hypernuclei
  - bound state of a  $\Lambda_c^+$  and a neutron (c-deuteron)
  - $\circ$  bound state of a  $\Lambda_c^+$  and a deuteron (c-triton)

# **Monolithic Active Pixel Sensors (MAPS)**



- The single Si chip includes both detection volume and readout electronics (instead of connecting two different units hybrid pixel sensors)
- > Many advantages:
  - $\circ$  small pixel pitch O(10-30  $\mu$ m)
  - lower power consumption O(10-100 mW/cm<sup>2</sup>) thanks to lower capacitance
  - thin: <50 μm (0.05% X<sub>0</sub>)
  - commercial process





Development of the ALICE Inner Tracking System 3 | Riccardo Ricci

# **Pointing resolution and vertex detectors layers**



The pointing resolution  $\sigma_p$  can be written as:

$$\sigma_p \sim \sigma_p^{sp} \oplus \sigma_p^{ms}$$

where  $\sigma_{p^{ms}}$  is the contribution due to the multiple scattering and  $\sigma_{p^{sp}}$  the one given by the structure of the detector (number of layers ad proximity to the Interaction Point.)

This indicates that is possible to achieve a better  $\sigma p$  by having a better spatial resolution of the detector, going closer to the IP, and having a lower material budget (in this particular case, of the beampipe and the innermost layer).

$$\sigma_p^{ms} \sim r_1 \theta_{RMS} \qquad \qquad \sigma_p^{sp} = \sqrt{(\frac{r_2}{r_2 - r_1}\sigma_1)^2 + (\frac{r_1}{r_2 - r_1}\sigma_2)^2}$$

Development of the ALICE Inner Tracking System 3 | Riccardo Ricci

INFN2024 - Sesto Incontro Nazionale di Fisica Nucleare

27