6° INCONTRO NAZIONALE DI FISICA NUCLEARE

CONSTRAINING THE FORMATION MECHANISMS OF LIGHT (ANTI)NUCLEI AT THE LHC AND APPLICATIONS FOR COSMIC RAY PHYSICS

GIOVANNI MALFATTORE (UNIVERSITY & INFN BOLOGNA, ITALY)

Light (anti)nuclei production in high-energy collisions

The production **mechanism** of light (anti)nuclei in high energy collisions is **not fully understood** and is still an open question that is being actively addressed both **theoretically** and **experimentally**

Low binding energy ($B_E \sim 2 \text{ MeV}$) and **large mass** imply that their formation is strongly sensitive to the chemical freeze-out temperature (~ 100 B_E)

Light (anti)nuclei can be produced at the LHC and are being studied by ALICE in pp and heavy-ion collisions

Inner Tracking System (ITS)

- 7 layer pixel detector
- 10 m² (12.5 GP) silicon tracker based on MAPS
- With respect of Run 2: Less material budget, improved tracking performance at low p_T

Time Projection Chamber (TPC)

- GEM-based readout pads
- Operating in continous readout
- PID via **energy loss (d***E***/d***x***)** in the TPC gas

Time Of Flight detector (TOF)

- PID via time-of-flight
 measurements
- Operating in continous readout

In addition, the new **Integrated Online-Offline system (O2)** has been developed to perform Run 3 events reconstruction and analysis.

Light (anti)nuclei at the LHC, the antinucleus factory

Light (anti)nuclei at the LHC, the antinucleus factory

+

N/dy / (2)

10

 10^{-6}

10-6

10

10⁻¹⁰

Penalty factor

 $\overline{d}/\overline{p}$ (Pb-Pb) ~ 1/300

 d/\bar{p} (pp) ~ 1/1000

10²

A

 $^{3}He/\overline{p}$ (Pb-Pb) ~ 1/10⁵

 ${}^{3}\overline{He}/\overline{p}(pp) \sim 1/10^{6}$

 $p_/A$ (GeV/c)

antimatter

matte

 \sim

At the LHC,

Multiplicity: "small" systems vs "large" systems

Pb-Pb collisions **geometry** strongly characterises the particle multiplicity \rightarrow **centrality**

Central collisions

→High number of participants
 →High multiplicity

Peripheral collisions

→Low number of participants
 →Low multiplicity

Comparison of 2-pions femtoscopic radii as a function of the measured charged-particle density multiplicity for various collision systems and energies

Colliding system:P Energy:5.02 TeV

AMIL

(Anti)nuclei in the Statistical Hadronization Model

- The hadrons are emitted from the interaction region in **thermal equilibrium** and abundances are fixed at the chemical freeze-out $(T_{chem})^{[1]}$
- The abundances depend on the hadron mass m, T_{chem} and spin degeneracy as

 $dN/dy \sim (2J+1)exp(-m/T_{chem})$

- Light (anti)nuclei are not strongly affected by feeddown
- Due to their low binding energy, nuclei might break and re-form between chemical and kinetic freeze-out in heavy-ion collisions
- The SHM can be extended from high- to lowmultiplicity systems via canonical formulation: the barion number B, the electric charge Q and the strangness S values are conserved exactly across the correlation volume V_c ^[2]

Anti)nuclei in Coalescence models

Nucleons form a nucleus via coalescence if they are close in the **phase space** and match the right spin-isospin configuration The formation probability is related to the **coalescence parameter** B_A

- Simple coalescence approach
 - $| p_p p_n | < p_0$ Only nucleon momentum (and spin) matter

J. I. Kapusta, Phys.Rev. C21, 1301 (1980) Scheibl,Heinz, Phys.Rev.C59:1585-1602 (1999) F. Bellini et al., PRC 103, 014907

Nucleons form a nucleus via coalescence if they are close in the **phase space** and match the right spin-isospin configuration The formation probability is related to the **coalescence parameter** B_{Δ}

Wigner-function approach (state-of-the-art model)

Nucleon momentum and position, nucleus wavefunction matter

The expansion of highly-excited state (after collisions) leads to kinetic freeze-out with nucleons \rightarrow Described by a QM density matrix \rightarrow Projection onto particle states at the detector gives particle spectra \rightarrow Final state interaction admits **bound-state** solutions (**nuclei**)

i.e., for d: $\mathbf{r} = \mathbf{r}_{\mathbf{p}} - \mathbf{r}_{\mathbf{n}}$, $\mathbf{q} = (\mathbf{p}_{\mathbf{p}} - \mathbf{p}_{\mathbf{n}})^2$, $\phi_d(\mathbf{r}_d, \mathbf{p}_d) \propto \varphi_d e^{i\mathbf{p}_d \cdot \mathbf{r}_d}$ where φ_d is the deuteron internal wavefunction, $B_2(p) \approx \frac{2(2s_d+1)}{m(2s_d+1)^2} (2\pi)^3 \int d^3 \vec{r} \, |\varphi_d(\vec{r})|^2 S_2(\vec{r})$ $S_2(r)$ the source of nucleons

J. I. Kapusta, Phys.Rev. C21, 1301 (1980) Scheibl, Heinz, Phys. Rev. C59:1585-1602 (1999) F. Bellini et al., PRC 103, 014907

- The yield is measured in **inelastic pp collisions** and as a function of the particle **multiplicity**
- An hardening of the production spectra is observed with increasing multiplicity (also observed in proton spectra)
- Comprehensive set of data for deuteron, measured in all collision systems as a function of multiplicity.
 Less data for helium and triton → Run 3
- The **integrated yield** is estimated summing the **measured yield** to the yield extrapolated in the unmeasured p_T region with a Levy-Tsallis function

26 - 28 February 2024

ISICA NUCLEAR

SHM or Coalescence? Nuclei over p ratio

INFN2024 5° INCONTRO NAZIONALE DI FISICA NUCLEARE

Dependence of **coalescence probability** on the charged particle multiplicity (\rightarrow dependence on the particle-emitting **source size**)

Dependence of **coalescence probability** on the charged particle multiplicity (\rightarrow dependence on the particle-emitting **source size**) In **high multiplicity** (**Pb-Pb**), significant drop observed, effect of space separation in a large source (~2-5 fm radius)

Dependence of **coalescence probability** on the charged particle multiplicity (→ dependence on the particle-emitting **source size**) In **high multiplicity (Pb-Pb)**, significant drop observed, effect of space separation in a large source (~2-5 fm radius) In **low multiplicity (pp, p-Pb)** a **weak dependence** on multiplicity in small sources (~ 1 fm radius) is observed

Exploring the particle yield vs nucleon source connection

Measurement of **production yield** in Highmultiplicity (HM) pp accompanied by a measurement of the **particle-emitting source radius** in the same event class allows us to \circ **Investigate the wavefunction** of the d,\bar{d}

Constrain coalescence models

ALICE experimental input to coalescence modelling

° INCONTRO NAZIONALE D

Light antinuclei as smoking guns for Dark Matter

6° INCONTRO NAZIONALE D FISICA NUCLEARE

[M. Korsmeier, F. Donato, N. Fornengo, Phys. Rev. D 97, 103011 (2018)]

Cosmic ray antideuteron and antihelium nuclei have been suggested as possible **smoking guns** for dark matter **WIMPs**, χ ($m_{\chi} \sim \text{few GeV} - \text{few TeV}$)p-p

- Produced by $\chi \overline{\chi}$ pair annihilation or χ decay in the galactic halo
- Low or no background from interactions of cosmic rays (CR) with interstellar matter (ISM) → to be estimated carefully!
- Subject for indirect DM searches with space-based experiments as AMS-02 (ongoing) or GAPS (planned end of 2023)
 → Observable: cosmic antinuclei flux

AMS-02

The Alpha Magnetic Spectrometer (**AMS**) detector allows for multiple and independent measurement of CR charge (with sign) and energy \rightarrow Separate CR chemical and isotopic composition in GeV to TeV range

It collected > 220 billions CRs up to now, but any **antinucleus** signal?

→ 6 ³He + 2 ⁴He candidates reported (As of today, still not confirmed)

Towards prediction of cosmic antinuclei flux

Ingredients:

- DM signal: dark matter source and processes
- Background: secondary CR from pp, p-A collisions in space (e.g. tuned Monte Carlo generators)
- Antiproton production cross section constrained with measurements (e.g. LHCb, AMBER, ...)
- Formation mechanism of antinuclei → typically via coalescence → constrain with data!
- Propagation in the Galaxy and the heliosphere → parameters constrained from CR measurements
- Antinucleus inelastic cross section to account for absorption by ISM

- 1st measurement of ³He absorption cross section in matter
- Experimental data and GEANT4 parametrization show a 2σ agreement
- Significant impact on ³He propagation in space

³He transparency at low E_{kin}:
 25% from CR interactions → The Galaxy is highly
 50% from DM candidates transparent to ³He nuclei

SICA NUCLEAR

ALI-PERF-542847

LHC Run 3 target **integrated luminosity: 13 nb**⁻¹ (Pb-Pb) with interaction rates ~ **50 kHz 200 nb**⁻¹ (pp) with interaction rates ~ **1 MHz** In the LHC Run 3, the **highest energy** ever was reached in pp collisions with the record of $\sqrt{s} = 13.6$ TeV.

What's on its way in Run3: more (anti)helium

Input to model **cosmic** ³He formation 0

What's on its way in Run3: more (anti)helium

10

ALI-PREL-565766

1.6

1.8

ALI-PERF-542847

800F

700

600

500

400

30(

dE/dx (arb. units)

LHC Run 3 target **integrated luminosity: 13 nb**⁻¹ (Pb-Pb) with interaction rates ~ **50 kHz 200 nb**⁻¹ (pp) with interaction rates ~ **1 MHz** The **integrated luminosity foreseen** for both Run 3 and Run 4 will allow to study (anti)helium with a similar **statistical precision** as reached for (anti)deuteron in Run 1 and Run 2

2.2

2.4

2.6

2.8 3 $p_{_{\rm T}}$ (GeV/c)

FISICA NUCLEARE

6° INCONTRO NAZIONALE DI FISICA NUCLEARE

THANK YOU FOR THE ATTENTION

SHM or Coalescence? Nuclei over p ratio

INFN2024 5° INCONTRO NAZIONALE DI FISICA NUCLEARE

SMALL OBJECTS (d, ³He...) LARGE OBJECTS ($^{3}_{\Lambda}$ H ...) 0 = 155 MeV V = 3 dV/dv0.005 CSM V/H_ev₁₀ d) [3] N. Sharma, K. Redlich et al., PRC107, 054903 (2023) Coale ALICE Preliminary pp. HM trigger, $\sqrt{s} = 13 \text{ TeV}$ 0.004 __01 s ALICE Pb-Pb, 0-10%, √s_{NN} = 2.76 TeV + 0.003 $B.R. = 0.25 \pm 0.02$ d/p (× 5) 10^{-2} 0.002 10^{-3} 0.001 ³He/d 10-6 3-body coalescence 10^{-4} -2-body coalescence ³He/p (× 20) - SHM, Vc = dV/dy**CERN-EP** 10^{-5} $\times 10^{-6}$ SHM. Vc = 3dV/dvALICE data 0 ---- CSM, T ○ pp √s = 7 TeV + BCE (T=156.5 MeV) 10^{2} 10^{3} 10 10⁻⁶ - CSM, T d) • pp √s = 13 TeV $\langle dN_{ch}/d\eta \rangle_{|\eta|<0.5}$ — No factor Coalesce ♦ p-Pb √s_{NN} = 5.02 TeV ALI-PREL-495342 ³He) ---With factor Coalesco (³He + 10 20 30 40 50 $\langle d\tilde{N}_{ch}/d\eta_{lab}\rangle_{\eta_{ch}} < 0.5$ Ratios d/p, ³He/d, and ³He/p as a function of charged particle multiplicity and their comparison with the Baryonic Canonical Ensemble (BCE) approach^[3] 10