Multi-channel analysis of the ¹⁸O + ⁴⁸Ti reaction at 275 MeV within the NUMEN project

Giuseppe Antonio Brischetto

for the NUMEN collaboration

Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Catania, Italy

6° Incontro Nazionale di Fisica Nucleare (INFN2024) 26 – 28 February 2024, Trento (Italy)

- Forbidden by the Standard Model (total leptonic number is not conserved)
- Prominent tool to establish:
 - Neutrino nature: Dirac or Majorana?
 - Neutrino absolute mass scale

$$\begin{bmatrix} T_{1/2}^{0\nu} \end{bmatrix}^{-1} = G_{0\nu} \left| M_{0\nu\beta\beta} \right|^{2} |f(m_{i})|^{2}$$
Phase-space factor
Nuclear matrix element (NME)
Contains the effective neutrino mass

Neutrinoless double beta (0vββ) decay

- Forbidden by the Standard Model (total leptonic number is not conserved)
- Prominent tool to establish:
 - Neutrino nature: Dirac or Majorana?
 - Neutrino absolute mass scale

$$\begin{bmatrix} T_{1/2}^{0\nu} \end{bmatrix}^{-1} = G_{0\nu} \left| M_{0\nu\beta\beta} \right|^{2} |f(m_{i})|^{2}$$
Phase space factor Nuclear matrix element (NME) contains the effective neutrino mass

 $M_{0\nu\beta\beta} = \langle \Psi_f | \hat{O}_{0\nu\beta\beta} | \Psi_i \rangle$

- NMEs are not physical observables
- The challenge is the description of the nuclear many body states
- Calculations (still sizeable uncertainties): QRPA, Large scale shell model, IBM, EDF, ab-initio

G. A. Brischetto – Sesto Incontro Nazionale di Fisica Nucleare (INFN2024) – Trento, Italy

Neutrinoless double beta (0vββ) decay

- Forbidden by the Standard Model (total leptonic number is not conserved)
- Prominent tool to establish:
 - Neutrino nature: Dirac or Majorana?
 - Neutrino absolute mass scale

$$\begin{bmatrix} T_{1/2}^{0\nu} \end{bmatrix}^{-1} = G_{0\nu} \left| M_{0\nu\beta\beta} \right|^{2} |f(m_{i})|^{2}$$
Phase space factor
Nuclear matrix element (NME)
Contains the effective neutrino mass

 $M_{0\nu\beta\beta} = \langle \Psi_f | \hat{O}_{0\nu\beta\beta} | \Psi_i \rangle$

- NMEs are not physical observables
- The challenge is the description of the nuclear many body states
- Calculations (still sizeable uncertainties): QRPA, Large scale shell model, IBM, EDF, ab-initio

G. A. Brischetto – Sesto Incontro Nazionale di Fisica Nucleare (INFN2024) – Trento, Italy

Experimental approaches to constrain $0\nu\beta\beta$ NMEs

Experimental probes for $0\nu\beta\beta$ NMEs:

- ✓ β-decay and 2νββ decay
- ✓ (π^+ , π^-), single charge exchange (³He,t), (d,²He), HI-SCE, electron capture, transfer reactions, µ-capture, γ-ray spectroscopy, γγ-decay, etc.
- A promising experimental tool: Heavy-Ion
 Double Charge-Exchange (HI-DCE)
 - 1st order isospin probes
 - 2nd order isospin probes

F. Cappuzzello et al., Eur. Phys. J. A 54 (2018) 72

Deduce data-driven information about the **0vββ** decay **NMEs** by using **DCE** nuclear reactions induced by **heavy ions**.

Differences

- DCE mediated by **strong interaction**, 0vββ by **weak interaction**
- Reaction dynamics vs. decay
- DCE includes sequential multinucleon transfer mechanism
- **Projectile and target** contributions in the NME

Similarities

- Same initial and final states: Parent/daughter states of the $0\nu\beta\beta$ decay are the same as those of the target/residual nuclei in the DCE
- **Similar operator:** Fermi, Gamow-Teller and rank-2 tensor components are present in both the transition operators, with tunable weight in DCE
- Large linear momentum (~100 MeV/c) available in the virtual intermediate channel
- Non-local processes: characterized by two vertices localized in a pair of nucleons
- Same nuclear medium
- Off-shell propagation through virtual intermediate channels

The NUMEN experiments @ INFN-LNS

K800 Superconducting Cyclotron

- In operation since 1996.
- Accelerates ions from H to U
- Maximum energy 80 MeV/u.

MAGNEX magnetic spectrometer

Optical characteristics	Measured values		
Solid angle	50 msr		
Angular range	from –20° to +85°		
Momentum acceptance	-14%, +10%		
Momentum dispersion	3.68 cm/%		
Maximum magnetic rigidity	1.8 T m		

F. Cappuzzello et al., Eur. Phys. J. A (2016) 52: 167 M. Cavallaro et al., NIM B 463 (2020) 334 Measured resolutions:

- Energy ∆E/E ~ 1/1000
- Angle $\Delta \theta \sim 0.2^{\circ}$
- Mass Δm/m ~ 1/160

The multi-channel approach

There are competing processes leading to the same final states as DCE

Multi-channel approach: study under the **same experimental condition** the **complete net** of reaction channels that contribute to the DCE cross-section

F. Cappuzzello et al., Prog. Part. Nucl. Phys. 128 (2023) 10399

The multi-channel approach

There are competing processes leading to the same final states as DCE

Multi-channel approach: study under the **same experimental condition** the **complete net** of reaction channels that contribute to the DCE cross-section

F. Cappuzzello et al., Prog. Part. Nucl. Phys. 128 (2023) 10399

F. Cappuzzello et al., Eur. Phys. J. A 52 (2016) 167

Experimental set-up

- **Beam**: ¹⁸O⁸⁺ at 275 MeV
- Target: TiO₂ evaporated onto Al
- Optical axis:
 - Elastic & inelastic: $\theta_{opt} = 9^{\circ}$, 15°, and 21°
 - 1-proton & 1-neutron transfer: $\theta_{opt} = 9^{\circ}$

Focal Plane Detector

D. Torresi et al., NIM A 989 (2021) 164918

10

Hybrid detection system based on:

- Proportional drift chamber:
 - Measure of x, y, θ, φ
 - Measure of ΔE
- Wall of 60 silicon detectors:
 - Measure of E_{resid}

Particle Identification

F. Cappuzzello et al., Nucl. Instrum. Meth. A 621 (2010) 419

G. A. Brischetto – Sesto Incontro Nazionale di Fisica Nucleare (INFN2024) – Trento, Italy

Elastic & inelastic scattering excitation energy spectrum

12

Missing mass formula

$$E_x = Q_0 - K\left(1 + \frac{M_e}{M_r}\right) + E_{beam}\left(1 - \frac{M_b}{M_r}\right) + 2\frac{\sqrt{M_bM_e}}{M_e}\sqrt{E_{beam}K} \cos\theta_{lab}$$

Energy resolution ≈ 500 keV (FWHM) Angular resolution $\approx 0.5^{\circ}$

Fully **quantum-mechanical theoretical calculations** performed within:

- Optical Model (OM)
- **Distorted wave Born approximation** (DWBA)
- Coupled Channel (CC)

Optical Potential:

Double-folding São Paulo Potential V_{SPP}

$$U_{opt}(r) = (N_R + iN_I) V_{SPP}(r)$$

where

$$V_{SPP}(r) = e^{-\frac{4v^2}{c^2}} \int \int d\mathbf{r}_1 d\mathbf{r}_2 \,\rho_1(\mathbf{r}_1) \,\rho_2(\mathbf{r}_2) \, V_{NN}(r_{12}, E_N)$$

L. C. Chamon et al., Phys. Rev. C 66 (2002) 014610

	N _R	N _I
OM/DWBA	1.0	0.78
CC	1.0	0.60

Elastic & inelastic scattering theoretical analysis

14

- Rotational model for the 2⁺, 3⁻, and 4⁺ collective excited states of both projectile and target
- $M(E\lambda)$ and δ_{λ} from the literature

Coulomb coupling $V_{\lambda}^{coul}(r) = \boldsymbol{M}(\boldsymbol{E}\lambda) e^2 \frac{\sqrt{4\pi}}{2\lambda + 1} \frac{1}{r^{\lambda + 1}}$ Nuclear coupling $V_{\lambda}^{nucl}(r) = -\frac{\boldsymbol{\delta}_{\lambda}}{\sqrt{4\pi}} \frac{dU_{opt}(r)}{dr}$

Elastic scattering cross-section angular distribution

⁴⁷Sc

⁴⁶Ca

48 Ti(18 O, 18 O $^{0+}_{g.s.}$) 48 Ti $^{2+}_{0.984}$ inelastic scattering angular distributions

G. A. Brischetto – Sesto Incontro Nazionale di Fisica Nucleare (INFN2024) – Trento, Italy

Peak at 2.2 MeV inelastic scattering angular distributions

G. A. Brischetto et al., Phys. Rev. C 109 (2024) 014604

One-proton transfer reaction

 48Ti
 49Ti
 50Ti

 47Sc
 48Sc
 49Sc

 46Ca
 47Ca
 48Ca

REACTION

DYNAMICS

NUCLEAR

STRUCTURE

Distorted waves: ISI from the analysis of elastic and inelastic scattering

Spectroscopic amplitudes derived from largescale shell model calculations O. Sgouros et al., Phys. Rev. C 104 (2021) 034617

Overlaps	Interaction	Core	Nucleon orbital
< ¹⁹ F ¹⁸ O>	P-SD-MOD	⁴ He	1p, 2s, 1d
<47Sc 48Ti>	SDPF-MU	¹⁶ O	2s, 2d, 1f, 2p
			18

G. A. Brischetto – Sesto Incontro Nazionale di Fisica Nucleare (INFN2024) – Trento, Italy

One-neutron transfer reaction

G. A. Brischetto – Sesto Incontro Nazionale di Fisica Nucleare (INFN2024) – Trento, Italy

Conclusion & Perspectives

 Good agreement between experimental and theoretical cross sections for elastic, inelastic and one-nucleon transfer channels without any free parameter

- Couplings to the low-lying collective states relevant for ISI, not significant for one-nucleon transfer reactions
- Large-scale shell model calculation provide good description of the data
- ✓ Sensitivity to different effective interactions

- Completion of the analysis of the whole $^{18}O + ^{48}Ti$ reaction net
- Determination of the **DCE cross section** for the $^{18}O + ^{48}Ti$ system

Nuove frontiere della fisica nucleare fondamentale e applicata

Thank you for your attention

Back up

Heavy-ion DCE reaction vs. $0\nu\beta\beta$

Linear correlation between DCE DGT and $0\nu\beta\beta$ DGT and Total NMEs

Structure models adopted

➢ IBM formalism E. Santopinto et al., PRC 98 (2018) 061601

Large scale shell model formalism N. Shimizu, et al. PRL 120 (14) (2018) 142502

G. A. Brischetto – COMEX7 – Catania, Italy

⁴⁰ Ca – ⁴⁰ Ar	¹¹⁶ Cd – ¹¹⁶ Sn	⁷⁶ Ge – ⁷⁶ Se		
F. Cappuzzello et al. EPJ A 51, 145 (2015) J.L. Ferreira et al., PRC 103, 054604 (2021) M. Cavallaro et al., Front. Astron. Space Sci. 8, 659815 (2021) S. Calabrese et al., PRC 104, 064609 (2021)	D. Carbone et al., PRC 102, 044606 (2020) S. Calabrese et al., NIM A 980, 164500 (2020) D. Carbone et al., Universe 07, 58 (2021) S. Burrello et al. PRC 105, 024616 (2022) J. Ferreira et al., PRC 105, 014630 (2022)	A. Spatafora et al., PRC 100, 034620 (2019) L. La Fauci et al., PRC 104, 054610 (2021) I. Ciraldo et al., PRC 105 (2022) 044607 I. Ciraldo et al., PRC 109 (2024) 024615		

¹³⁰ Te – ¹³⁰ Xe	⁴⁸ Ca — ⁴⁸ Ti	¹² C – ¹² Be		
M. Cavallaro et al., Res. Phys. 13, 102191 (2019) V. Soukeras et al., Res. Phys. 28, 104691 (2021) D. Carbone et al., Universe 07, 58 (2021)	O. Sgouros et al., PRC 104, 034617 (2021) O. Sgouros et al., PRC 108, 044611 (2023) G. A. Brischetto et al., PRC 109, 014604 (2024)	F. Cappuzzello et al., EPJ A 57, 34 (2021) A. Spatafora et al., PRC 107, 024605 (2023)		

Inelastic scattering cross-section angular distributions

Coulomb co	upling	$V_{\lambda}^{coul}(r$	$T(E\lambda) = M(E\lambda)$	$e^2 \frac{\sqrt{4\lambda}}{2\lambda + 1}$	$\frac{1}{r}$ $\frac{1}{r^{\lambda+1}}$						
Nuclear cou	upling	V_{λ}^{nucl}	$(r) = -\frac{\delta}{\sqrt{2}}$	$\frac{\delta_{\lambda}}{4\pi} \frac{dU_{opt}}{dr}$	(r)						
						Theor.	approach	N_W	${ m J}_V ({ m MeV~fm}^3)$	${ m J}_W \ ({ m MeV}~{ m fm}^3)$	$\sigma_R \ ({ m mb})$
						OM/	/DWBA	0.78	-346	-270	2571
							\mathbf{CC}	0.60	-346	-208	2498
R_{V}	$=\frac{\int dr 4\pi}{\int dr 4\pi}$	$\tau r^3 V_{SPP}(r)$	<u>·)</u>			C	CEP	1.0	-258	-176	2480
	$\int dr 4\pi$	$r^2 V_{SPP}(r$	·)								
	R _V (fm)	B(E2) (e ² b ²)	M(E2) (e fm ²)	δ ₂ (fm)	B(E3) (e ² b ³)	M(E3) (e fm ³)	δ ₃ (fm)				
¹⁸ 0	4.60	0.0043 ⁺	+6.56	0.75	0.0013 [§]	+35.36	0.87				
⁴⁸ Ti	4.00	0.0720 [‡]	+26.83	1.11	0.0074 [§]	+86.02	0.77				

⁺B. Pritychenko *et al.*, At. Data Nucl. Data Tables **107**, 1 (2016)

[‡]S. Raman *et al.*, At. Data Nucl. Data Tables **78**, 1 (2001)

[§]T. Kibédi and R. H. Spear, At. Data Nucl. Data Tables **80**, 35 (2002)

One-proton transfer background subtraction

$$\frac{d\sigma}{d\Omega} \propto \left| T^{DWBA} \right|^2 = \left| \int d\vec{r}_{\alpha} d\vec{r}_{\beta} x_{\beta}^{(-)*} \left\langle \phi_{\mathrm{B}} \phi_{b} \left| V \right| \phi_{A} \phi_{a} \right\rangle x_{\alpha}^{(+)} \right|^2$$

Distorted waves $\chi_{\alpha,\beta}$

- Describe the elastic scattering at the entrance(α) and exit(β) channels
- Solutions of Schrödinger equation adopting the **Optical Model**

Overlap functions

- $\varphi_{\ell sj}$ are single-particle solutions of a Woods-Saxon potential.
- Coefficients A_{esj} and B_{esj} are the spectroscopic amplitudes derived from shell-model calculations.

$$ig ig \langle \phi_{\mathrm{B}} \left| \phi_{\mathrm{A}}
ight
angle \propto A_{\ell s j} arphi_{\ell s j}^{B x} \ ig \langle \phi_{b} \left| \phi_{a}
ight
angle \propto B_{\ell s j} arphi_{\ell s j}^{a x}$$

Overlaps	Interaction	Core	Nucleon orbital
< ¹⁹ F ¹⁸ O>	P-SD-MOD	⁴He	1p, 2s, 1d
<47Sc 48Ti>	SDPF-MU	¹⁶ O	2s, 2d, 1f, 2p

One-proton transfer coupling scheme

Blue arrows: DWBA calculation Orange arrows: CCBA calculation