The Three-Nucleon Correlation function

A. Kievsky

Istituto Nazionale di Fisica Nucleare, Sezione di Pisa

Sesto Incontro Nazionale di Fisica Nucleare INFN2024, Trento, 26 - 28 February 2024

Collaboration ALICE-Pisa Nuclear Theory Group

Theory

 A. Kievsky (INFN)
 M. Viviani (INFN-Pisa)
 L.E. Marcucci (Universita' di Pisa and INFN-Pisa)
 S. König (UNC)
 E. Garrido (CSIC-Madrid)
 M. Gattobigio (Université Côte d'Azur and CNRS)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへの

Experiment

- L. Fabbietti (TUM)
- B. Singh (TUM)
- O. Vázquez Doce (INFN-Frascati)
- R. Del Grande (TUM)
- L. Šerkšnytė (TUM)

Dmytro Melnichenko (TUM)

Introduction

- When a high-energy pp or p-nucleus collision occurs, particles are produced and emitted at relative distances of the order of the nuclear force
- The effect of the mutual interaction between hadrons is reflected as a correlation signal in the momentum distributions of the detected particles which can be studied using correlation functions
- The correlation function incorporate information on the emission process as well as on the final state interaction of the emitted pairs
- By measuring correlated particle pairs or triplets at low relative energies and comparing the yields to theoretical predictions, it is possible to study the hadron dynamics.

The two-particle correlation function

The two-particle correlation function is defined as the ratio of the yield of a particle pair to the product of the single-particle yields.

$$C\left(\vec{p}_{1},\vec{p}_{2}\right)=\frac{\mathcal{P}\left(\vec{p}_{1},\vec{p}_{2}\right)}{\mathcal{P}\left(\vec{p}_{1}\right)\mathcal{P}\left(\vec{p}_{2}\right)}$$

 $\triangleright \mathcal{P}(\vec{p}_1, \vec{p}_2)$ is the probability of finding a pair with momenta \vec{p}_1 and \vec{p}_2

- ▶ $\mathcal{P}(\vec{p}_i)$ is the probability of finding each particle with momentum \vec{p}_i .
- ▶ In absence of correlations, the two-particle probability factorizes, $\mathcal{P}(\vec{p}_1, \vec{p}_2) = \mathcal{P}(\vec{p}_1)\mathcal{P}(\vec{p}_2)$, and the correlation function is equal to unity.

The two-particle correlation function

The correlation between the pair is related to the particle emission and the subsequent interaction of the pair

$$C\left(ec{p}_{1},ec{p}_{2}
ight)=rac{1}{\Gamma}\sum_{m_{1},m_{2}}\int d^{3}r_{1}\,d^{3}r_{2}S_{1}\left(r_{1}
ight)S_{1}\left(r_{2}
ight) imes|\Psi_{m_{1},m_{2}}(ec{p}_{1},ec{p}_{2},ec{r}_{1},ec{r}_{2})|^{2}$$

▶ $S_1(r)$ describes the spatial shape of the source for single-particle emissions. It can be approximated as a Gaussian probability distribution with a width R_M

$$S_1(r) = rac{1}{(2\pi R_M^2)^{rac{3}{2}}} e^{-r^2/2R_M^2}$$

The integration on the CM coordinates leads to the Koonin-Pratt relation for two-particle correlation function

$$C(k) = \frac{1}{\Gamma} \int d^3 r \, S(r) |\psi_k(\vec{r})|^2$$

The pp correlation function

• S(r) is the two-particle emission source, given by

$$S(r) = \left(rac{1}{4\pi R_{
m M}^2}
ight)^{3/2} e^{-rac{r^2}{4R_{
m M}^2}}$$

• $\psi_k(\vec{r})$ is the two-particle scattering wave function at $E = \hbar^2 k^2/2\mu$

The scattering wave function is expanded in partial waves

$$\psi_{k} = 4\pi \sum_{[\ell S]} i^{\ell} (kr)^{-1} u_{\ell}(kr) \mathcal{Y}_{[\ell S]}(\hat{r}) \mathcal{Y}_{[\ell S]}^{*}(\hat{k})$$

▶ In the case of two protons $u_{\ell}(kr) \rightarrow F_{\ell}(\eta, kr) + T_{\ell\ell}\mathcal{O}_{\ell}(kr)$

The pp Correlation Function

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

The pd Correlation Function

We now consider the pd correlation function:

$$A_d C_{pd}(k) = \frac{1}{6} \sum_{m_2, m_1} \int d^3 r_1 d^3 r_2 d^3 r_3 S_1(r_1) S_1(r_2) S_1(r_3) |\Psi_{m_2, m_1}|^2$$

the probability of deuteron formation

$$A_{d} = \frac{1}{3} \sum_{m_{2}} \int d^{3}r_{1} d^{3}r_{2} S_{1}(r_{1}) S_{1}(r_{2}) |\phi_{m_{2}}|^{2}$$

the single particle source function

$$S_1(r) = rac{1}{\left(2\pi R_{
m M}^2
ight)^{rac{3}{2}}}e^{-r^2/2R_{
m M}^2}$$

うせん 前 ふばやふばやふむやる

The pd Correlation Function

the pd correlation function results

$$A_{d}C_{pd}(k) = \frac{1}{6} \sum_{m_{2},m_{1}} \int \rho^{5} d\rho d\Omega \frac{e^{-\rho^{2}/4R_{M}^{2}}}{(4\pi R_{M}^{2})^{3}} |\Psi_{m_{2},m_{1}}|^{2}$$
$$\Psi_{m_{2},m_{1}} = \sum_{LSJ} \sqrt{4\pi} i^{L} \sqrt{2L+1} e^{i\sigma_{L}} (1m_{2}\frac{1}{2}m_{1} \mid SJ_{z}) (LOSJ_{z} \mid JJ_{z}) \Psi_{LSJJ_{z}}$$

a = a

- ► the Jacobi coordinates: $\mathbf{x}_{\ell} = \mathbf{r}_j \mathbf{r}_i$, $\mathbf{y}_{\ell} = \mathbf{r}_{\ell} \frac{\mathbf{r}_i + \mathbf{r}_j}{2}$
- the hyperspherical coordinates $ho = \sqrt{x_1^2 + (4/3)y_1^2}$, $\Omega \equiv [\alpha_1, \hat{x}_1, \hat{y}_1]$
- ▶ The scattering wave function is expanded in partial waves using the HH basis

$$\Psi_{LSJJ_z} = \rho^{-5/2} \sum_{[K]} u_{[K]}(\rho) \mathcal{Y}_{[K]}^{LSJJ_z}(\Omega)$$

The pd Correlation Function: partial-wave contributions

The pd Correlation Function: comparison to experiment

M. Viviani, S. König, A. Kievsky, L.E. Marcucci, B. Singh, O. Vázquez Doce, Phys. Rev. C 108, 064002 (2023) ALICE collaboration, arXiv:2308.16120 [nucl-ex]

The ppp correlation function

Now we consider the ppp correlation function:

$$\mathcal{C}_{ppp}(Q) = \int
ho^5 d
ho d\Omega \; S_{
ho_0}(
ho) |\Psi_{ppp}|^2$$

with ${\it Q}$ the hyper-momentum, ${\it S}_{\rho_0}$ the source function defined as

$$S_{
ho_0}(
ho) = rac{1}{\pi^3
ho_0^6} e^{-(
ho/
ho_0)^2}$$

 Ψ_{ppp} is the ppp scattering wave function

$$\Psi_{
m ppp} = \sum_{[\kappa]} u_{[\kappa]}(
ho) \mathcal{B}_{[\kappa]}(\Omega) = \Psi^0 + \sum_{J,[\kappa]}^{J,\kappa} \Psi^J_{[\kappa]}$$

To be noticed that Ψ^0 is not well known. In $\Psi^J_{[K]}$ the interaction has been considered up to \overline{J} and \overline{K}

・ロト・1日・1日・1日・1日・2000

The ppp correlation function

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Comparison to data (work in progress)

A. Kievsky, E. Garrido, M.Viviani, L.E. Marcucci, L. Šerkšnytė, R. Del Grande, Phys. Rev. C, in press

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

Some remarks

- To compare the experimental and the theoretical correlation functions some corrections have been considered
- For the pp case the corrected correlation function is defiend as

$$C(k) = \lambda_{pp}C_{pp}(k) + \lambda_{pp_{\Lambda}}C_{pp_{\Lambda}}(k) + \lambda_{X}C_{X}(k)$$

- primary protons λ_{pp} = 0.67, secondary protons produced mainly in the decay of the Λ, λ_{ppΛ} = 0.203, misidentification contributions λ_x = 0.127
- For the ppp case the corrected correlation function is defiend as

$$C(Q_3) = \lambda_{ppp} C_{ppp}(Q_3) + \lambda_{ppp_{\Lambda}} C_{ppp_{\Lambda}}(Q_3) + \lambda_{X} C_{X}(Q_3)$$

primary protons λ_{ppp} = 0.618, secondary protons produced mainly in the decay of the Λ, λ_{pppΛ} = 0.196, misidentification contributions λ_x = 0.186

The *pp* correlation function

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 のへ(?)

The $p\Lambda$ and $pp\Lambda$ correlation functions

• The $p\Lambda$ correlation function is defined as

$$C(k) = \int d^3 r \, S(r) |\psi_{p\Lambda}\left(ec{r}
ight)|^2$$

- ψ_p is the scattering pΛ wave function. It is governed by the pΛ interaction which is not very well kown
- ► The few pA scattering data can be described in the context of the EFT at different orders
- > At different cutoffs different sets of low-energy scattering parameters appear

	NLO13						NLO19				SMS N2LO		
C(MeV)	450	500	550	600	650	700	500	550	600	650	500	550	600
<i>a</i> ₀ (fm)	-2.90	-2.91	-2.91	-2.91	-2.90	-2.90	-2.91	-2.90	-2.91	-2.90	-2.80	-2.79	-2.80
r_e^0 (fm)	2.64	2.86	2.84	2.78	2.65	2.56	3.10	2.93	2.78	2.65	2.82	2.89	2.68
<i>a</i> ₁ (fm)	-1.70	-1.61	-1.52	-1.54	-1.51	-1.48	-1.52	-1.46	-1.41	-1.40	-1.56	-1.58	-1.56
r_e^1 (fm)	3.44	3.05	2.83	2.72	2.64	2.62	2.62	2.61	2.53	2.59	3.16	3.09	3.17

The $p\Lambda$ correlation function

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ 少々ぐ

The $pp\Lambda$ correlation function (preliminary)

► A NNA three-body force is included fixed to describe the $B(^3_{\Lambda}H)$

・ロト・西・・山下・ 山下・ 山下・

Summary

- Although its apparent simplicity, the three-nucleon problem is of great complexity
- Measurements of the correlation function allow for new tests of the NN and NNN interactions
- In the ppp case the Coulomb interaction couples the asymptotic dynamics increasing the difficulties of the numerical treatment
- ► The corrections of the computed *pp* and *ppp* correlation functions needs the kwonledge of the *p*Λ and *pp*Λ correlation functions
- However the $p\Lambda$ interaction is not well known
- Studies on the $p\Lambda$ and $pp\Lambda$ correlation functions have been started
- The ppA correlation functions could be sensitive to the NNA three-body force, an important ingredient in the studies of compact systems