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Background: Neutron Stars

Image from [Mann, 2020]

I Mass: ∼ 1 to ∼ 2.3 M�

I Density: ∼ 1 to ∼ 10 n0

I Radius: ∼ 12 km
I Composition: mostly neutrons

The core is well modeled as nuclear matter.
Hand-point-right Details of nuclear interaction in these conditions
aren’t well constrained → Neither is high-density EOS

Note: “isolated” NS too can give us precious information
(e.g. Mmax)
Mmax ' 1.97 M�[Demorest et al., 2010]
Mmax ' 2.01 M�[Antoniadis et al., 2013]
Mmax ' 2.08 M�[Fonseca et al., 2021]
Mmax ' 2.35 M�[Romani et al., 2022]
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Background: Binary Neutron Stars

A spectacular confirmation from
the events GW170817 (GW

signal), GRB170817A (sGRB) and
AT2017gfo (kilonova), the first
multimessenger detection of a

BNS merger
↓

The start of multimessenger
astronomy
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Methods: Selecting nuclear properties

The problem in a nutshell: can we pinpoint nuclear properties starting from BNS observables? Our approach:

Construct an EOS from a Skyrme parametrization of the energy per nucleon…
E
A
|T=0 =

3~
10m∗ (3π

2n)2/3[(1 − x)5/3 + x5/3] + [a + 4bx(1 − x)]n + cnδ − x∆

x =
np

n
~2/(2m∗) = ~2/(2m) + αn

and fix coefficients a, b, c and δ to target specific values of B,K ,Esym and n0. m∗ is varied directly, we cannot
control L.

EOS m∗ B K Esym L n0

LS175 1.0 16.0 175 29.3 73.7 0.155
LS220 1.0 16.0 220 29.3 73.7 0.155
LS255 1.0 16.0 255 29.3 73.7 0.155
m∗

0.8 0.8 16.0 220 29.3 79.3 0.155
m∗

S 0.634 16.0 220 29.3 86.5 0.155
(m∗K)S 0.634 16.0 281 29.3 86.5 0.155
(m∗KE)S 0.634 16.0 281 36.9 109.3 0.155
SkShen 0.634 16.3 281 36.9 109.4 0.145
Shen 0.634 16.3 281 36.9 110.8 0.145
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Methods: Simulating BNS mergers

I One 1.365 M� equal mass simulation for each EOS

I BNS merger simulations performed with the
EinsteinToolkit[Zlochower et al., 2022]

I Full GR (BSSNOK formulation of the EfE)

I Valencia formulation of Euler equations (WhiskyTHC
code) [Radice and Rezzolla, 2012]

I Leakage (emission) + M0 (absorption) neutrino
transport module [Galeazzi et al., 2013, Radice et al., 2016]
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Results: structure of the merger remnant

Cm =
∫

e−imφρdxdy

I merger remnant structure and fate are tied to P|n0
and dP/dn|n0

I the incompressibility K has particular influence
I the final density correlates tightly with pressure at

(6 ∼ 7 · 1014 g/cm3)
I the crossover from the m = 2 to m = 1 mode is also

influenced by the incompressibility
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Results: ejecta properties

I ejecta are divided in
dynamical (satisfying the
Geodesic criterion) and
disk ejecta (satisfying the
Bernoulli criterion)

I dynamical ejecta are further
divided in tidal (Ye < 0.1)
and shock-heated (Ye ≥ 0.1)

I ejecta properties are different between dynamical (lower Ye, higher v∞ and broader s) and disk
I not much difference between EOS (no visible trend)
I cf. [Bovard et al., 2017]
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Results: disk ejecta masses

I of course collapse plays a dominant role

I dominance of the m = 2 bar mode leads to efficient
mass ejection - so called spiral wave wind {see
[Nedora et al., 2019]}

I besides very general observations (e.g. softer EOSs
lead to enhanced neutrino winds), no clear trends
with EOS
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Results: dynamical ejecta mass VS. nuclear properties

I tidal and shock-heated components have different
ejection mechanisms, so they correlate to different
nuclear properties

I shocked ejecta correlate with P|n0 (therefore m∗ or
Esym) Hand-point-right almost no dependence on K

I for very stiff EOS, shock-heating dominates and
there is no tidal ejecta

I otherwise, clear correlation between Mtid
ej and K

(possibly due to radial matter pile-up)
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Results: Gravitational waves

I + polarization of the (2, 2)-mode of the GW strain h
I collapse induced shut-down for models LS175 and LS220
I “two phases” behaviour in amplitude reduction slope post-merger

Hand-point-right linked to transition from = 2 to m = 1 mode in the remnant
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Results: Gravitational Waves
I model LS220 shows a “chirp-like”

behaviour of the peak frequency before
collapse, due to increased rotational
velocity as the star contracts

I same effects is seen in other models (e.g.
m∗

0.8 and m∗
S), but less dramatic

I decreasing m∗, increasing K and Esym
increases the central pressure and
decreases the density, reducing f2

I the sequence of models m∗
S , (m∗K)S ,

(m∗KEsym)S and SkShen tends toward
the Shen EOS spectrum. In particular
SkShen and Shen are almost
indistinguishable

I computed GW properties are therefore
independent of the EOS microphysical
model and mostly sensitive to the EOS
around saturation density
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Conclusions

I K has a large impact at high density, i.e. in the core of the merger remnant. Increasing K decreases the
compactness of the remnant and lowers the dominant GW frequency. It also quickly halts the remnant
contraction, dampening its oscillations

I m∗ is important for both Pcold and Pth. Lowering it increases the Pcold at all densities, with a similar influence
as K . But: the pressure density dependence is less steep, leading longer oscillations. Decreasing m∗ increases
Γth, while reducing shock-heating via reduced compactness. So Pth actually drops

I The mass of tidal ejecta correlates with K and the mass of shock-heated ejecta correlates with m∗. Mass
ejection from the disk is more complex and hard to correlate with the EOS.

I The SkShen EOS is very similar to the original Shen (larger high density P and a slightly lower Γth. They lead
to a similar evolution, and the GW spectra are remarkably similar
Hand-point-right nuclear matter properties are a useful measure to quantify EOS effects in BNS mergers

Future work: run many more models, try to perform actual fits as function of m∗, K , etc.

Thank you
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