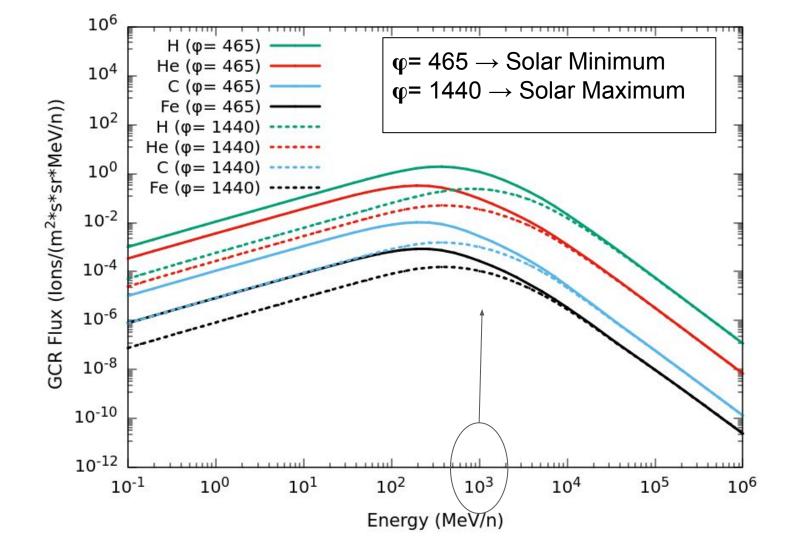
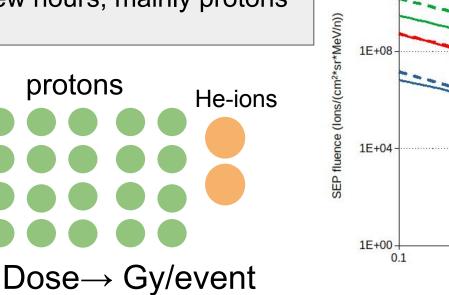
A method to predict space radiation biological effectiveness for Galactic Cosmic Rays and intense Solar Particle Events

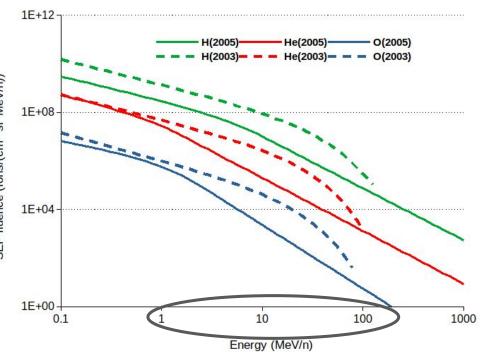
<u>Ricardo L. Ramos</u>, Mario P. Carante, Elena Bernardini, Valerio Vercesi and Francesca Ballarini

ricardo.ramos@pv.infn.it

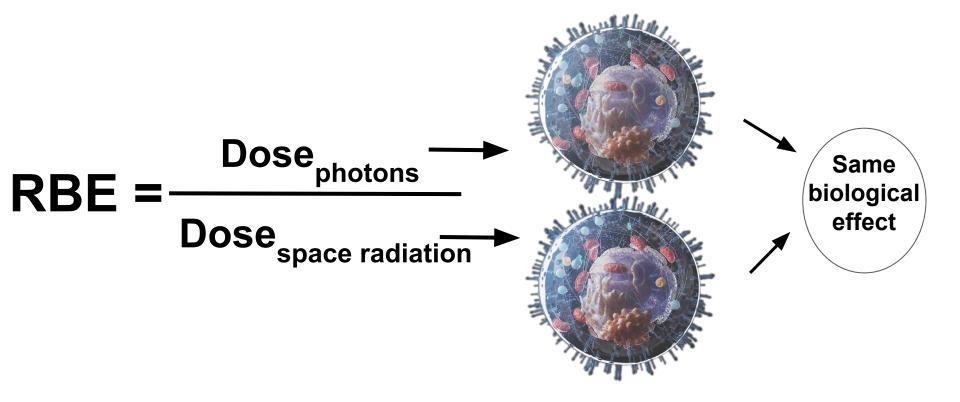


Sesto Incontro Nazionale di Fisica Nucleare, February 2024


Space Radiation in free space Galactic Cosmic Rays (GCR)


87 % protons 12 % He-ions 1 % Heavy-ions Maximum Dose Rate = 0.5 mGy/day

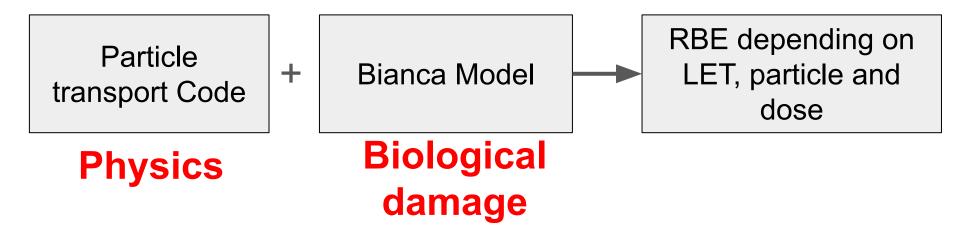
Solar Particle Events (SPE)


 Up to 10¹¹ particles.cm⁻² in few hours, mainly protons

Biological damage by space radiation

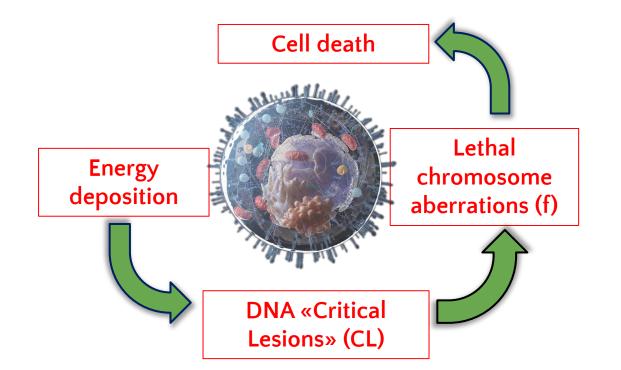
Relative biological effectiveness

NCRP recommendations on the RBE values for non-cancer effects to be used for skin and BFO


Radiation Type	Recommended RBE	Range
	RDE	
1 to 5 MeV	6.0	4-8
neutrons		
5 to 50 MeV	3.5	2-5
neutrons		
Heavy ions	2.5	1-4
Protons > 2 MeV	1.5	-

Fix values

ARES Project


Grant Giovani in CSN5 - 2023/2024

WP1 – Space radiation effects computational studies

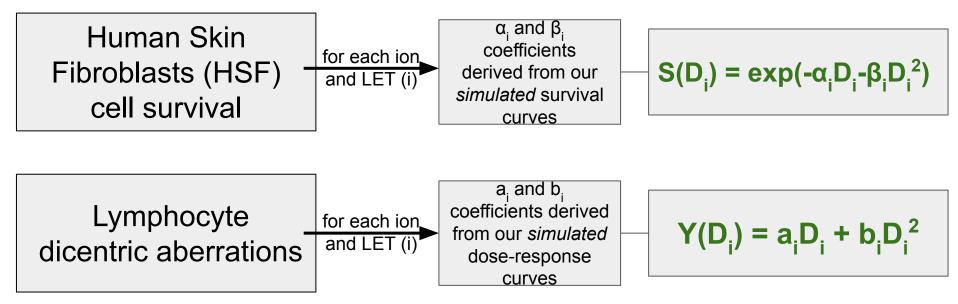
BIANCA model developed in Pavia

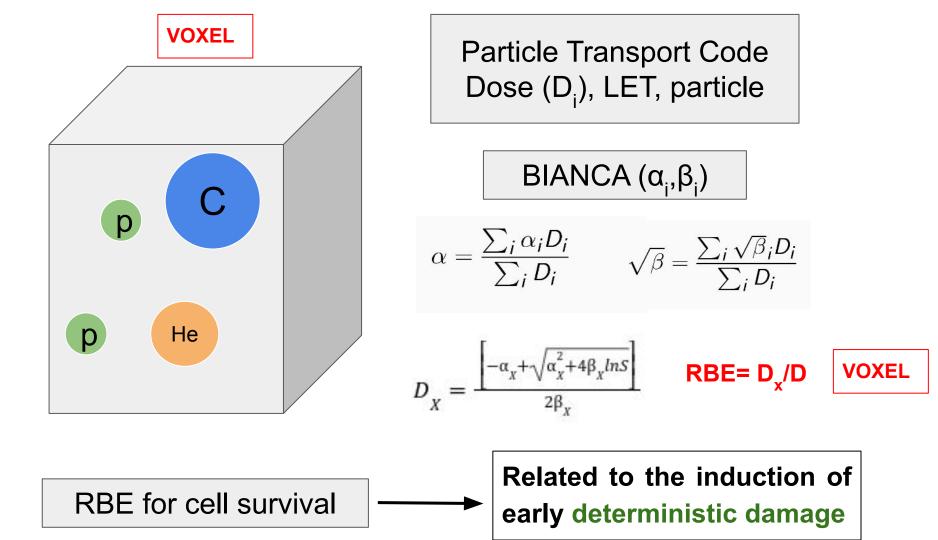
Main assumption: DNA "critical lesions" lead to chromosome aberrations, and some chromosome aberrations (e.g., dicentrics) lead to cell death

BIANCA model

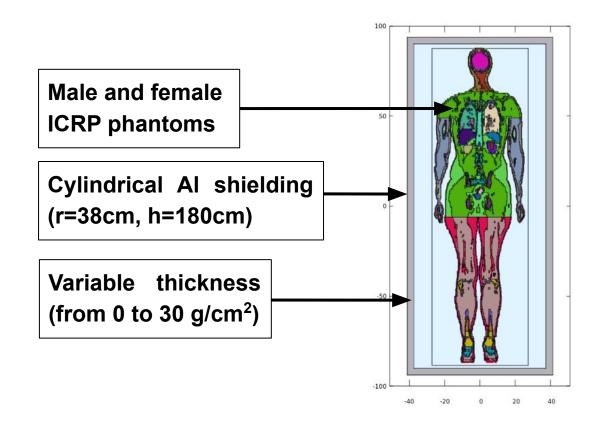
Example of radiobiological database for V79:

Z=1 A=1,2,3 LET alfa beta 5 0.161168003608071 0.034227925863557 7.5 0.219155512347106 0.031807059167825 0.277730304065006 0.026062986984213 10 12.5 0.324223249128924 0.031963531745716 15 0.370061833526514 0.032195025167274 17.5 0.421451839190716 0.031121716722449 20 0.482515824349661 0.028525693688078 22.5 0.560520033338037 0.018863044675061 25 0.613244623202487 0.019486893814967 27.5 0.670278414247874 0.018719108913174 30 0.723636950773347 0.019048357687813 Z=2 A=3 (He3) LET alfa beta 5 0.134484868252636 0.033328267759041 10 0.144914045351193 0.039167916406686 20 0.195309536204132 0.055766427339300 0.254263496879065 0.086614721872234 30 0.346232798363745 0.110820821623133 40 0.461751927355611 0.125899692117198 50 60 0.577156328111620 0.149414730517834 0.688177599469057 0.170307321062664 70 80 0.831202131850177 0.173711239896555 0.958976414546513 0.178987749762615 90 Z=2 A=4 (He4) alfa LET beta


5 0.122919965474113 0.0282243396663055 10 0.164742642147497 0.0320256399518597


Cell death for each ion and LET:

$$\mathbf{S}(\mathbf{D}_{i}) = \exp(-\alpha_{i}\mathbf{D}_{i}-\beta_{i}\mathbf{D}_{i}^{2})$$


BIANCA model

In this work, two **radiobiological databases** have been generated by **BIANCA** for ions up to iron:

SPE: DOSE and RBE calculations

SPE of August 1972

SPE of October 2003

SPE of August 1972

Organ	D (mGy)	RBE	G (mGy-eq)	H (mSv)
Av. Skin	444.62	1.47	655.43	669.79
BFO	129.69	1.57	203.14	210.45
Colon	121.24	1.58	191.56	196.91
Lung	150.15	1.56	234.45	239.67
Stomach	113.81	1.58	180.25	186.29
Breast	343.03	1.49	512.62	545.75
Heart	110.05	1.59	174.58	181.03
Bladder	122.50	1.57	192.58	195.00
0esophagus	110.05	1.59	174.58	181.03
Liver	121.86	1.58	192.37	197.86
Uterus/Cervix	64.25	1.68	108.20	118.08
Ovaries	64.02	1.68	107.44	113.46
		-	1	-

Female ICRP phantom Shielding: 10 g/cm²

SPE of August 1972

Deterministic effects

NASA and ESA limits (30-day limit) Skin = 1.5 Gy-Eq BFO = 0.25 Gy-Eq

Al thickness (g/cm ²)	Equivalent Dose MALE (Gy.RBE)		Equivalent Dose FEMALE (Gy.RBE)	
	Skin	BFO	Skin	BFO
0.3	18.37	1.66	19.27	1.71
1	10.18	1.29	10.62	1.34
2	5.95	0.96	6.19	1.03
5	2.06	0.47	2.16	0.50
10	0.62	0.19	0.65	0.20
20	0.12	0.05	0.13	0.06

SPE of October 2003

Deterministic effects

NASA and ESA limits (30-day limit) Skin = 1.5 Gy-Eq BFO = 0.25 Gy-Eq

Al thickness (g/cm ²)	Equivalent Dose MALE (Gy.RBE)		Equivalent Dose FEMALE (Gy.RBE)	
	Skin	BFO	Skin	BFO
0.3	13.61	0.48	14.60	0.50
1	5.11	0.31	5.44	0.33
2	2.32	0.20	2.38	0.21
5	0.48	0.07	0.51	0.08
10	0.10	0.03	0.11	0.03
20	0.02	0.01	0.02	0.01

Conclusions

- The BIANCA model, interfaced with a radiation transport code, provided RBE predictions of cell killing (related to deterministic effects) and chromosome aberrations (related to stochastic effects including cancer)
- To respect NASA limits, a 650-days Mars Mission should be performed during the solar maximum period. For the SPE of October 2003, a shielding of 5 g/cm² is necessary to respect the limits and for the SPE of August 1972 a shielding of 10 g/cm² is necessary to respect the limits.
- BIANCA allows taking into account that the RBE depends not only on particle type, but also on LET and dose.

Thanks!

ricardo.ramos@pv.infn.it