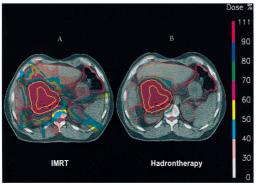
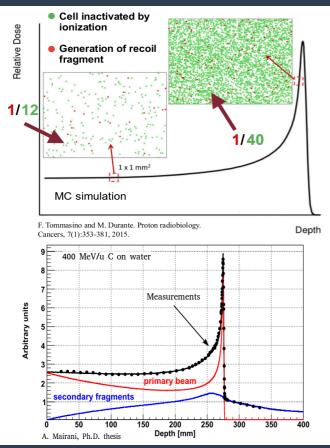


Nuclear fragmentation cross sections measurements: the FOOT experiment


Yunsheng Dong

INFN Milano Sesto Incontro Nazionale di Fisica Nucleare 28/02/2024

Particle therapy

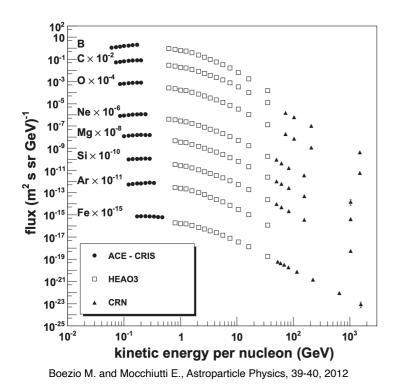

Durante M. And Paganetti H., reports on progress in physics, 79(9):096702, 2016

Particle therapy (PT): a form of radiotherapy conducted with hadrons (mainly ¹²C and H)

- Max dose release in the Bragg peak
- Better dose conformation over the tumour volume, minimising the damage in healthy tissues
- Enhanced biological effectiveness in ¹²C therapy

Particle therapy

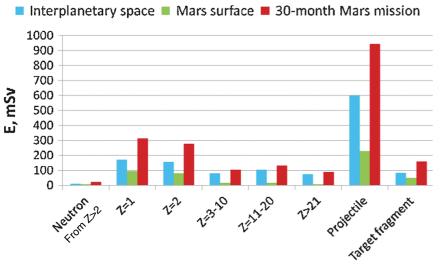
Particle therapy (PT): a form of radiotherapy conducted with hadrons (mainly ¹²C and H)


- Max dose release in the Bragg peak
- Better dose conformation over the tumour volume, minimising the damage in healthy tissues
- Enhanced biological effectiveness in ¹²C therapy

Nuclear interactions in PT

- Target fragmentation in proton therapy
- Projectile fragmentation in heavy ion therapy

Need of differential cross section data to improve the nuclear models adopted in PT and explore new particles such as ¹⁶O and ⁴He

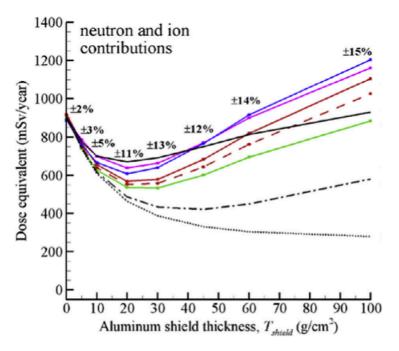

Radioprotection in space

Main radiation hazards in future space missions:

- Galactic cosmic radiations (E<10²⁰ eV) with H~85-90%, He~10-14%, Z>2~1%
- Solar particles events (E<10⁵ eV), mainly protons

Radioprotection in space

Durante M. and Cucinotta F.A., Reviews of modern physics, 83, 2011


Main radiation hazards in future space missions:

- Galactic cosmic radiations (E<10²⁰ eV) with H~85-90%, He~10-14%, Z>2~1%
- Solar particles events (E<10⁵ eV), mainly protons

High contribution to the equivalent dose from:

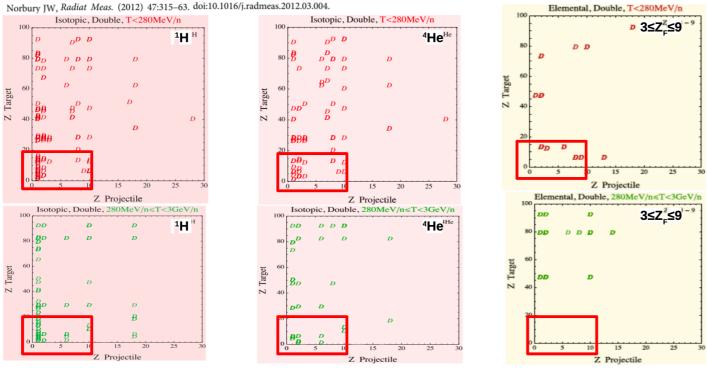
- Primary light ions (mainly H and He isotopes) and fragments produced by primary high Z and Energy particles
- Secondary neutrons that can penetrate deeply

Radioprotection in space

Slaba T. et al, Life science in space research, 12, 2017

Main radiation hazards in future space missions:

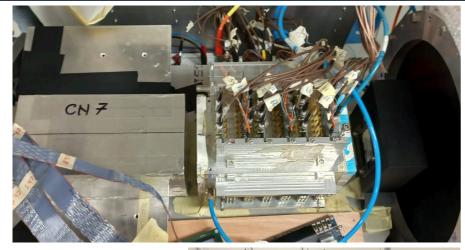
- Galactic cosmic radiations (E<10²⁰ eV) with H~85-90%, He~10-14%, Z>2~1%
- Solar particles events (E<10⁵ eV), mainly protons


High contribution to the equivalent dose from:

- Primary light ions (mainly H and He isotopes) and fragments produced by primary high Z and Energy particles
- Secondary neutrons that can penetrate deeply

Large discrepancies between transport codes, mainly for light fragments and neutrons.

Need of nuclear interaction differential cross section data to optimize the MC models, the space shielding design and strategy for shielding


Differential cross section data

Double differential cross section data available in literature

- In the red square: data of interest for particle therapy
- Lack of data, especially for heavy fragments ($z \ge 3$)
- Scarcity of data at large angles
- Double differential cross section of interest for particle therapy:
 - ¹²C @ 50 and 95 MeV/u on natC and CH2 @ Ganil J. Dudouet et al, Physical Review C, 88, 08 2013

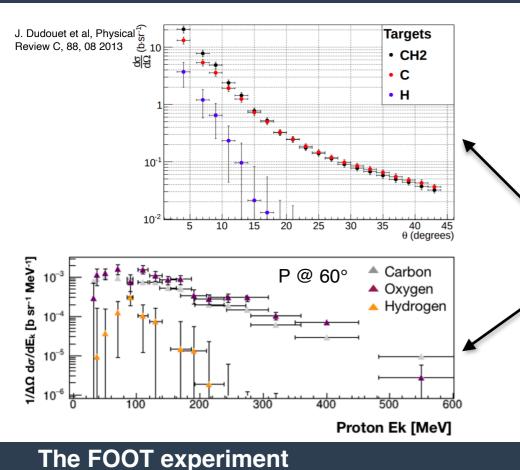
The FOOT (FragmentatiOn Of Target) experiment

Measuring the Impact of Nuclear Interaction in Particle Therapy and in Radio Protection in Space: the FOOT Experiment

Giuseppe Battistoni¹, Marco Toppi^{2,3}*, Vincenzo Patera^{3,4} and The FOOT Collaboration

★Battistoni G. et al, Frontiers in Physics 2021 (8) doi.org/ 10.3389/fphy.2020.568242

FOOT aims to measure the fragmentation differential cross sections ($d^2\sigma/d\Omega \cdot dE$) of particles involved in PT and space radioprotection with two experimental setups


The FOOT data will be adopted:

- As benchmark for MC simulation tools
- To improve the TPS and study new particles species in PT (e.g.: ¹⁶O and ⁴He)
- To develop new space shielding materials

Radiobiological desiderata (from PT):

- d σ /dE for target fragm. in PT ~ 10%
- $d^2\sigma/d\Omega dE$ for projectile fragm. in PT ~ 5%
- $\Delta Z \sim 2-3\%$; $\Delta A \sim 5\%$

Measurement strategy: choice of target

Stoichiometric subtraction of cross sections

- Human body composition: ¹⁶O(61%), ¹²C(23%), H(10%)
- Targets of pure H or O are difficult to be installed and managed (gaseous targets with undefined initial P and inflammable)

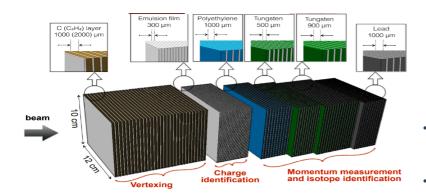
 $\sigma(H) = (\sigma(CH_2) - \sigma(C))/2$

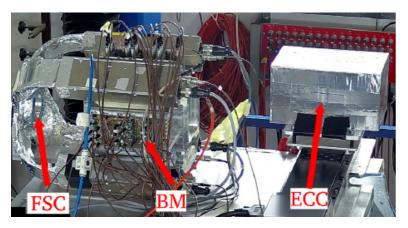
- Performed @ GANIL with ¹²C @ 95 MeV/u
- Performed @ CNAO with a "preliminary" FOOT setup
 *Mattei et al., IEEE Transactions on Radiation and Plasma Medical Sciences, 4(2):269–282, 2020, 10.1109/TRPMS.2020.2972197
- The subtraction results are an order of magnitude smaller with respect to the initial measured cross section values: **large statistical uncertainties**
- Use of natC, C₂H₄ and PMMA targets

Measurement strategy: inverse kinematic approach

Fragment	E (MeV)	LET (keV/µm)	Range (µm)		
¹⁵ O	1.0	983	2.3	D: 1	
¹⁵ N	1.0	925	2.5	Direct	
¹⁴ N	2.0	1137	3.6	1. constant a	H, C, O (959
¹³ C	3.0	95 1	5.4	kinematic	
^{12}C	3.8	912	6.2		
¹¹ C	4.6	878	7.0		
${}^{10}B$	5.4	643	9.9	р	
⁸ Be	6.4	400	15.7		
⁶ Li	6.8	215	26.7		
⁴ He	6.0	77	48.5		
³ He	4.7	89	38.8	Inverse	ILA DIOFNI
^{2}H	2.5	14	68.9	kinematic	H, C, O (95%)

Target fragmentation measurements


- Target fragments produced from 60 200 MeV protons have ranges of $\sim \mu m$
- Technical difficulties for a direct detection with common detectors
- Use of an inverse kinematic approach for the target fragmentation measurements


Two experimental setup to							
fulfil the FOOT experimental							
program:							

The FOOT experiment

Application field	Beam	Target	Upper Energy (MeV/nucleon)	Kinematic approach	Interaction process
PT	¹² C	C,C ₂ H ₄	200	inverse	p+C
PT	¹⁶ O	$C_{1}C_{2}H_{4}$	200	inverse	p+C
PT	⁴ He	C, C ₂ H ₄ , PMMA	250	direct	α+C, α+H, α+O
PT	¹² C	C, C ₂ H ₄ , PMMA	400	direct	C+C, C+H, C+O
PT	¹⁶ O	C, C ₂ H ₄ , PMMA	500	direct	O+C, O+H, O+O
Space	⁴ He	C, C ₂ H ₄ , PMMA	800	direct	α+C, α+H, α+O
Space	¹² C	C, C ₂ H ₄ , PMMA	800	direct	C+C, C+H, C+O
Space	¹⁶ O	C, C ₂ H ₄ , PMMA	800	direct	O+C, O+H, O+O
	PT PT PT PT PT Space Space	PT ¹² C PT ¹⁶ O PT ⁴ He PT ¹² C PT ¹⁶ O Space ⁴ He Space ¹² C	PT ¹² C C,C ₂ H ₄ PT ¹⁸ O C,C ₂ H ₄ PT ¹⁴ He C, C ₂ H ₄ , PMMA PT ¹² C C, C ₂ H ₄ , PMMA PT ¹² C C, C ₂ H ₄ , PMMA PT ¹⁶ O C, C ₂ H ₄ , PMMA Space ⁴ He C, C ₂ H ₄ , PMMA Space ¹² C C, C ₂ H ₄ , PMMA	PT 12 C C, C ₂ H ₄ 200 PT 16 O C, C ₂ H ₄ 200 PT 16 O C, C ₂ H ₄ 200 PT 16 O C, C ₂ H ₄ 200 PT 12 C C, C ₂ H ₄ , PMMA 250 PT 12 C C, C ₂ H ₄ , PMMA 400 PT 16 O C, C ₂ H ₄ , PMMA 500 Space 4 He C, C ₂ H ₄ , PMMA 800 Space 12 C C, C ₂ H ₄ , PMMA 800	PT12CC,C2H4200inversePT18OC,C2H4200inversePT18OC,C2H4200inversePT18OC,C2H4200inversePT12CC,C2H4, PMMA250directPT12CC,C2H4, PMMA400directPT18OC,C2H4, PMMA500directPT18OC,C2H4, PMMA500directSpace4HeC,C2H4, PMMA800directSpace12CC,C2H4, PMMA800direct

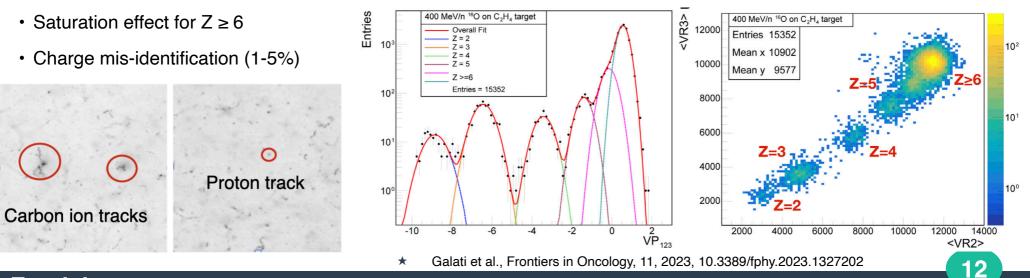
Emulsion spectrometer

Emulsion Cloud Chamber (ECC) detector to measure the fragments with Z \leq 3 and θ <70°

ECC composition:

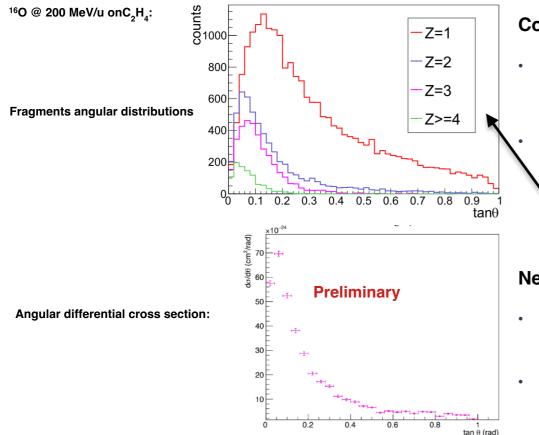
- Vertexing region: nuclear emulsion films alternated with target layers to identify the interaction vertices
- Charge id. region: only emulsion films exploited for the charge id. with a refreshing procedure
- Absorbing region: emulsion and absorber layers for the momentum and mass id., exploiting the track length and the Multiple Coulomb Scattering effect

ECC setup:


- Plastic scintillator to count the number of primaries
- Drift chamber to check the incoming beam position
- ECC detector with nuclear emulsion films for the cross section measurements

11

Emulsion spectrometer: charge identification


Charge identification:

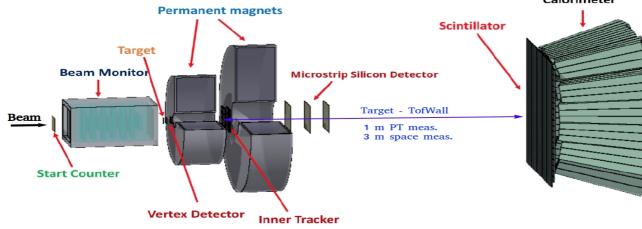
- Z ~dE/dx ~ grain density ~ track volume
- Refreshing: applying thermal treatments with increasing temperatures, the tracks from less ionizing particles are gradually deleted
- · Combining volumes and angles of the tracks calculated after each treatment, the charge id. is reached

Emulsion spectrometer

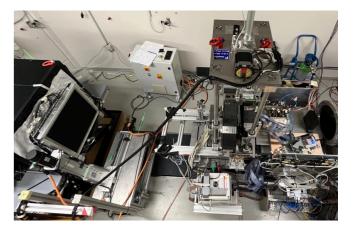
Emulsion spectrometer: measurements

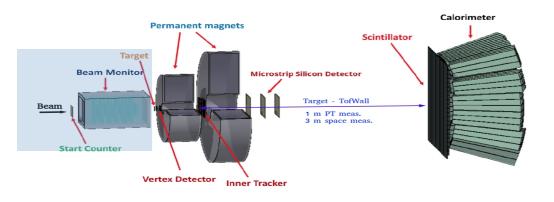
Emulsion spectrometer

Concluded campaigns:


- Characterisation with P, ⁴He and ¹²C at 80 MeV/u completed
 - * Montesi et al., Open Physics, 17(1):233–240, 2019, 10.1515/phys-2019-0024
 - ^{16}O @ 200 400 MeV/u and ^{12}C @ 200-700 MeV/u on $_{nat}\text{C}$ and C_{2}H_{4} targets, analysis ongoing
 - Galati et al., Open Physics, 19(1):383–394, 2021, 10.1515/phys-2021-0032
 - * Galati et al., Frontiers in Oncology, 11, 2023, 10.3389/fphy.2023.1327202

Next measurements:

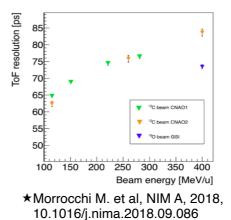

- Study of a novel kind of emulsions to measure the target fragmentation process with direct kinematics
- First tests in 2023 @ Trento and CNAO with P

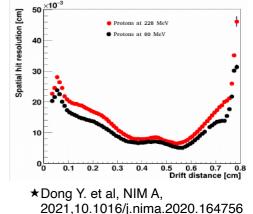

Electronic spectrometer

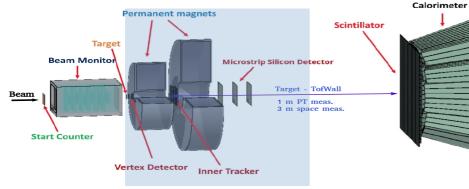
Electronic spectrometer to detect the fragments with Z \geq 3 and θ <6°~10°

Calorimeter

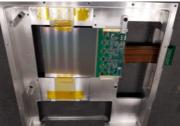
Pre target region:


- Start Counter: plastic scintillator for TOF and trigger measurements
- Beam Monitor: drift chamber for the beam direction and position measurements

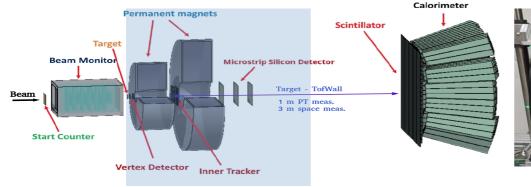

Start counter



Beam Monitor



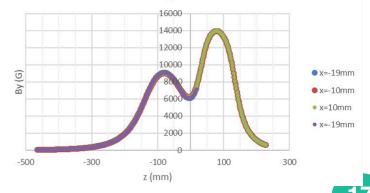
Magnet Vertex + Inner tracker



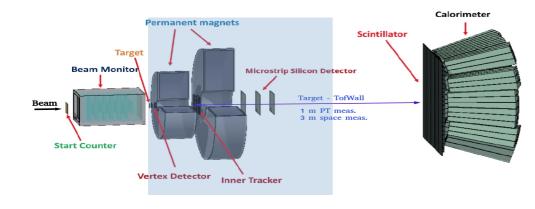
MSD

Tracking region:

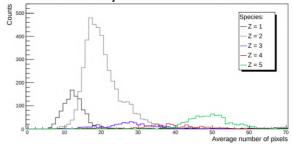
Particle track and momentum reconstruction

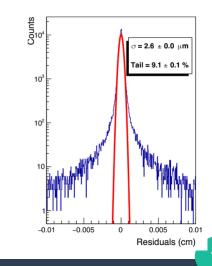


Magnet

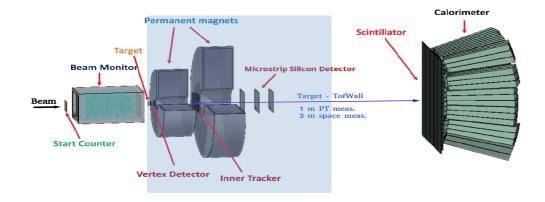


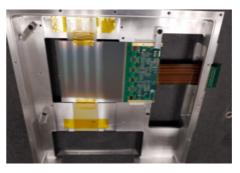
LNF - Longitudinal scans


Tracking region:


- · Particle track and momentum reconstruction
- Permanent magnets: two magnets in Halbach configuration $B_{max}{\sim}1.4T$ \perp the beam axis, delivered in autumn 2023

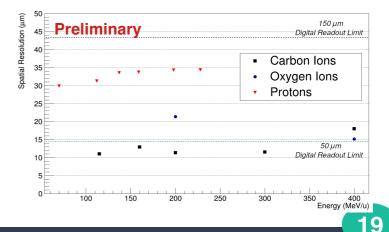
Vertex + Inner tracker

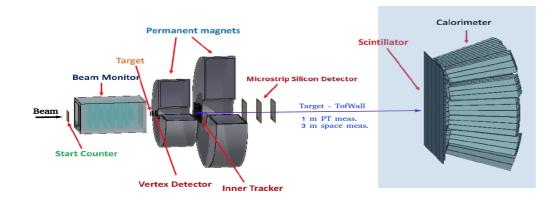

Spiriti E. et al, NIM A,2017, 10.1016/j.nima.2017.08.058



Tracking region:

- · Particle track and momentum reconstruction
- Permanent magnets: two magnets in Halbach configuration $B_{max} \sim 1.4T$ \perp the beam axis, delivered in autumn 2023
- Vertex and Inner Tracker: Silicon pixel detectors (M28), IT under study

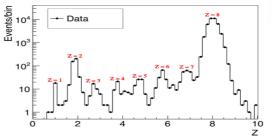

Microstrip Silicon Detector



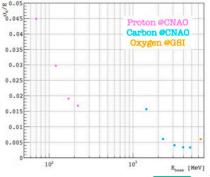
Silvestre G. et al, JINST, 17, 2022, 10.1088/1748-0221/17/12/P12012

Tracking region:

- · Particle track and momentum reconstruction
- Permanent magnets: two magnets in Halbach configuration $B_{max}{\sim}1.4T$ \perp the beam axis, delivered in autumn 2023
- Vertex and Inner Tracker: Silicon pixel detectors (M28), IT under study
- MSD: Microstrip Silicon Detector, characterisation ongoing

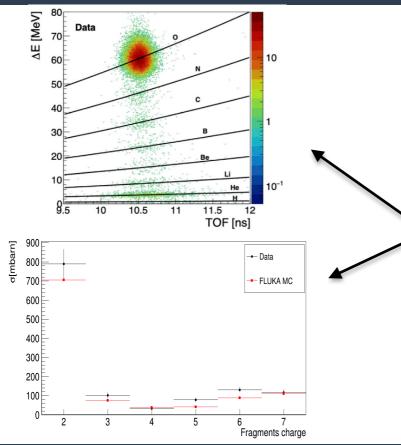

Tof Wall

Calorimeter



Downstream region:

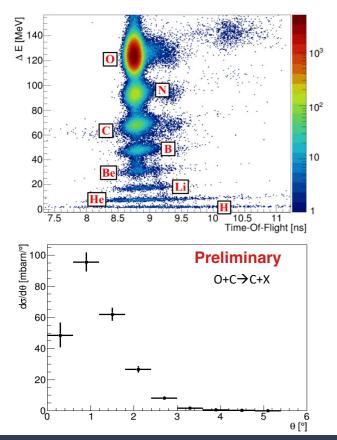
- TofWall: Plastic scintillator bars for the TOF and dE/dx measurements, necessary for the charge identification
- Calorimeter: 320 Bi₄Ge₃O₁₂ (BGO) crystals dedicated to the E_{kin} measurement, characterisation ongoing



Kraan A.C. et al, NIMA, 1001:165206, 2021, 10.1016/j.nima.2021.165206

20

Electronic spectrometer: measurements


Elemental cross section measurements

• Different campaigns concluded with half of the setup: ${}^{16}O @ 200 - 400 \text{ MeV/u on C and C}_{2}H_{4} \text{ (GSI)}$ ${}^{4}\text{He} @ 100 - 220 \text{ MeV/u on C (Hidelberg)}$ ${}^{12}\text{C} @ 100 - 400 \text{ MeV/u on C, C}_{2}H_{4} \text{ (CNAO)}$

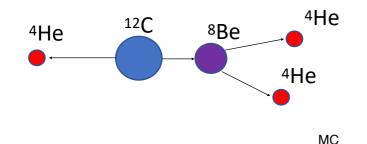
Elemental fragmentation cross section of ¹⁶O @ 400 MeV/u on _{nat}C target published (SC+BM+TW)

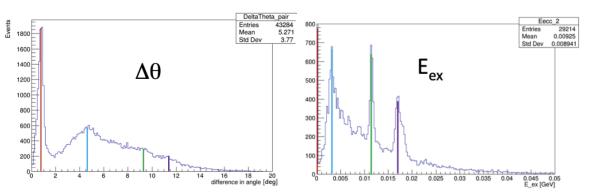
*Toppi M. et al, Frontiers in Physics, 10, 2022, 10.3389/fphy.2022.979229

Electronic spectrometer: measurements

Elemental cross section measurements

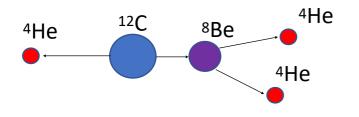
- Different campaigns concluded with half of the setup: ¹⁶O @ 200 – 400 MeV/u on C and C₂H₄ (GSI)
 ⁴He @ 100 – 220 MeV/u on C (Hidelberg)
 ¹²C @ 100 – 400 MeV/u on C, C₂H₄ (CNAO)
- Elemental fragmentation cross section of ¹⁶O @ 400 MeV/u on natC target published (SC+BM+TW)

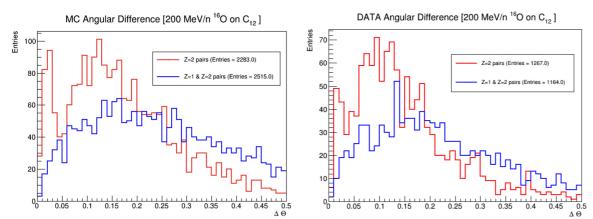

*Toppi M. et al, Frontiers in Physics, 10, 2022, 10.3389/fphy.2022.979229


Differential cross section measurements

Analysis of angular cross section of ${}^{16}O$ @ 400 MeV/u on ${}_{nat}C$ target, with partial setup ongoing

α clustering measurements




- Different experiments investigated nuclear clustering phenomena, mainly at the Coulomb barrier and Fermi energy range (<100 MeV/u)
- FOOT can measure α clustering phenomena in ${}^{12}\text{C} = -3\alpha$ and ${}^{16}\text{O} = -24\alpha$ @ 200-400 MeV/u
- Measure the formation of intermediate state with the *α* particle angular correlation and excitation energies

Preliminary studies conducted

 Electronic spectrometer: high statistics, low resolution (¹²C @ 200 MeV/u on natC, MC sample)

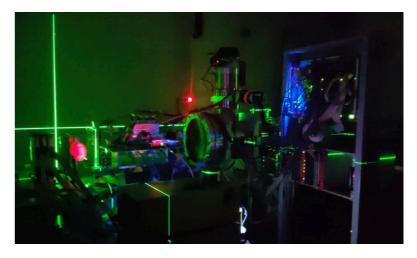
α clustering measurements

- Different experiments investigated nuclear clustering phenomena, mainly at the Coulomb barrier and Fermi energy range (<100 MeV)
- FOOT can measure α clustering phenomena in ${}^{12}\text{C} = -3\alpha$ and ${}^{16}\text{O} = -3\alpha$ @ 200-400 MeV/u
- Measure the formation of intermediate state with the *α* particle angular correlation and excitation energies

Preliminary studies conducted

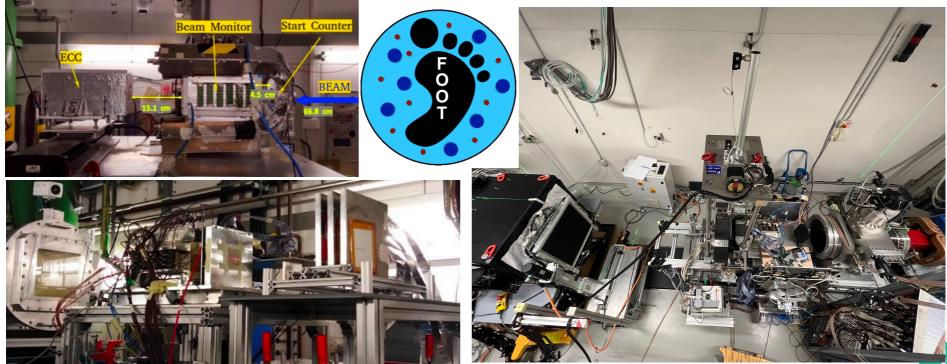
- Electronic spectrometer: high statistics, low resolution (¹²C @ 200 MeV/u on natC, MC sample)
- Emulsion spectrometer: low statistics, high resolution (¹⁶O @ 200 MeV/u on _{nat}C, MC and Data)

α clustering measurements

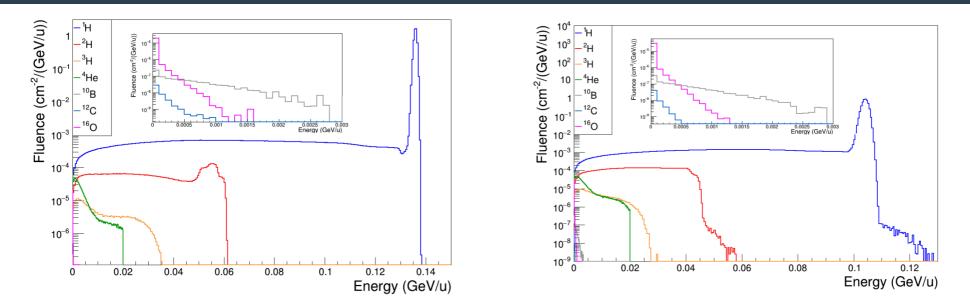

Conclusions and future perspectives

Present status

- Emulsion setup is fully characterised and the cross section data analysis on the past campaigns is ongoing
- Full electronic setup completed in late 2023 (first full setup data taking at CNAO with ¹²C @ 200 MeV/u)
- · Detector performance assessment are almost completed
- Elemental and differential cross section studies on data collected with partial experimental setup are ongoing

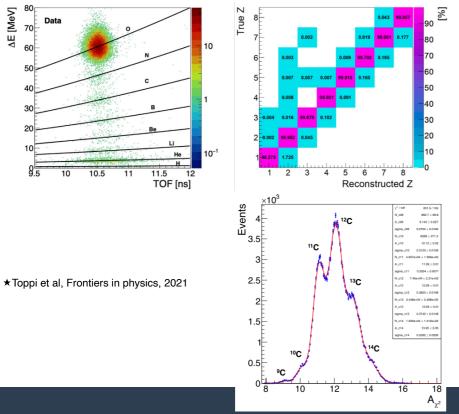

Future perspectives

- 2024: first "true" physics run @ CNAO with ¹²C beam
- + 2024-2025: physics run @ GSI with ^{16}O with $E_{kin}\!\!>\!\!400$ MeV/u
- 3 PRIN projects related to FOOT approved



Thank you for your attention

Fluence



Fluence of target fragments induced by 150 MeV protons in water at z=2.5 (left) and 7.5 cm (right) The Bragg Peak is at 15.8cm

A. Embriaco et al. "FLUKA simulation of target fragmentation in proton therapy" Physica Medica, 80 (2020), doi:10.1016/j.ejmp.2020.09.018

Electronic spectrometer

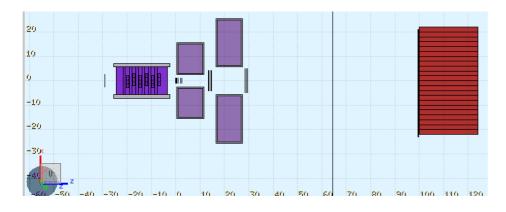
Toppi et al, Elemental fragmentation cross sections for a 16 O beam of 400MeV / u kinetic energy interacting with a graphite target using the FOOT Δ E-TOF detectors, Frontiers in physics, 2022

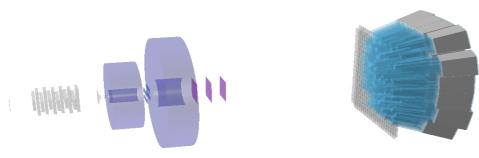
Charge identification

- Combine ΔE and TOF measurements: $\frac{dE}{dx} \sim z^2 \cdot f(\beta)$ $\beta = \frac{L}{c \cdot TOF}$
- Charge misidentification < 2%

Mass identification

- Combine TOF, P and E_{kin} with three methods $A_1 = \frac{m}{u} = \frac{1}{u} \frac{p\sqrt{1-\beta^2}}{\beta}$ $A_2 = \frac{m}{u} = \frac{E_{kin}}{u} \frac{1+\sqrt{1+\gamma^2\beta^2}}{\gamma^2\beta^2}$ $A_3 = \frac{m}{u} = \frac{E_{kin}^2 - p^2}{2E_{kin}}$
- Final mass estimate with $\chi 2$ fit combined with an augmented Lagrangian method

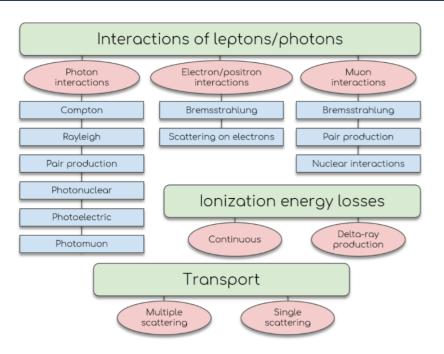

Performances with ¹²C and ¹⁶O @ 100-400 MeV/u:


- σ_{τοF} ~ 70 ps
- $\sigma(\Delta E)/\Delta E \sim 6 14\%$

$$\sigma_{Ekin}/E_{kin} \le 2\%$$

 $\sigma_p/p \sim 5\%$

Simulation and reconstruction software


The simulations are made by means of FLUKA MC tool with a dedicated output scheme

The FOOT reconstruction software: SHOE (Software for Hadrontherapy Optimization Experiment)

- Handles both MC and experimental data
- Provides the input files for the FLUKA simulations
- Divided into two levels:

 local level: to reconstruct the relevant physics quantities of each sub-detector
 global level: to finalize the analysis combining the sub-detectors informatio

FLUKA Monte Carlo models of interest for FOOT

Electromagnetic interactions models in FLUKA

Handron-nucleus interactions:

- PreEquilibrium Approach to NUclear Thermalization (PEANUT)
 model for particles with P<3-5 GeV/c based on Generalized Intra-Nuclear Cascade (GINC) model
- Pre-equilibrium emission of light nuclei (A<5)
- Evaporation, Fission, Fragmentation and γ de-excitation

Nucleus-nucleus interactions

- Boltzmann-Master Equation model (E<100 MeV/u):
 Thermalization of composite nuclei by means of two-body interactions and secondary particles emissions
 Cavinato et al, Nuclear Physics A 643 (1998)
- Relativistic Quantum Molecular Dynamics (0.12-5 GeV/u): Collision simulated minimizing the Hamiltonian equation of motion considering the Gaussian wave functions of all the nucleons in the nucleus overlapping region H. Sorge et al., Annals of Phys. 192 (1989) 266