FrPNC @ TRIUMF Atomic Parity Violation in Francium

Seth Aubin

College of William and Mary

PAVI 2011 Workshop

La Sapienza University, Rome

FrPNC collaboration

- S. Aubin (College of William and Mary)
- J. A. Behr, K. P. Jackson, M. R. Pearson (TRIUMF)
- V. V. Flambaum (U. of New South Wales, Australia)
- E. Gomez (U. Autonoma de San Luis Potosi, Mexico)
- G. Gwinner, R. Collister (U. of Manitoba)
- D. Melconian (Texas A&M)
- L. A. Orozco, J. Zhang (U. of Maryland at College Park)
- G. D. Sprouse (SUNY Stony Brook)
- Y. Zhao (Shanxi U., China)

Atomic Parity Violation: Basic Processes

(parity conserving)

(nuclear spin-independent)

(nuclear spin-dependent)

Atomic Parity Violation: Basic Processes

Standard Electromagnetic Interaction (parity conserving) Z⁰ exchange Electron-Nucleon PNC (nuclear spin-independent) Intra-nuclear PNC Anapole moment (nuclear spin-dependent)

Motivation 1: Nuclear Spin-Independent PNC

Z⁰ exchange Electron-Nucleon PNC (nuclear spin-independent) The Hamiltonian for this interaction: *(infinitely heavy nucleon approximation)*

$$H_{PNC, nsi} = \frac{G}{\sqrt{2}} \kappa_1 \gamma_5 \,\delta(\vec{r})$$

 $G = Fermi \ constant = 10^{-5}/m_p^2$ Proton: $\kappa_{1,p} = \frac{1}{2} \left(1 - 4 \sin^2 \theta_W \right) \approx 0.04$ Neutron: $\kappa_{1,n} = -0.5$

[Standard Model values for $\kappa_{1, (p,n)}$]

Motivation 1: Nuclear Spin-Independent PNC

Z⁰ exchange Electron-Nucleons PNC (nuclear spin-independent) For a **nucleus** with Z protons and N neutrons:

$$H_{PNC,nsi} = \frac{G}{\sqrt{2}} \frac{Q_{weak}}{2} \gamma_5 \rho(\vec{r})$$

 $Q_{weak} = weak \text{ charge of nucleus } \approx -N$ $= 2(\kappa_{1,p}Z + \kappa_{1,n}N)$

 $\rho(\vec{r})$ = nucleon distribution

Motivation 1: Testing and Probing the Weak Interaction

Parity Violation = Unique Probe of Weak Interaction

Atomic PNC (APV) experiments test and constrain the Standard Model

Motivation 1: Testing and Probing the Weak Interaction

Parity Violation = Unique Probe of Weak Interaction

Atomic PNC (APV) experiments test and constrain the Standard Model

[figure from Young et al., Phys. Rev. Lett. 99, 122003 (2007)]

Atomic PNC

$$H_{PNC, nsi} = \frac{G}{\sqrt{2}} \frac{Q_{weak}}{2} \gamma_5 \rho(\vec{r}) =$$
 Parity Odd

 \Rightarrow Electron wavefunction does not have a definite parity !!!

1

$$\Rightarrow \begin{cases} |S\rangle \rightarrow |S\rangle + \varepsilon_{PNC}|P\rangle \\ |P\rangle \rightarrow |P\rangle + \varepsilon_{PNC}|S\rangle \end{cases} \qquad \text{Parity forbidden transitions become possible (slightly) !!!} \\ \varepsilon_{PNC,nsi} \propto Z^{3}R \sim 10^{-11} \text{ (Cs)} \qquad \frac{\text{Francium advantage:}}{\varepsilon_{PNC,nsi}(Fr)} \approx 18 \end{cases}$$

Searching for New Physics

Francium can reduce experimental systematics !

... what about theoretical systematics ?

Atomic theory uncertainties are continually improving !!! (~1%) (Safronova, Derevianko, Flambaum, etc ...)

Nuclear theory uncertainty is dominated neutron skin radius.

- \rightarrow Determine neutron skin in ²⁰⁸Pb (PREX experiment, RCNP).
- → 1% R_{neutron} error gives a 0.3-0.6% uncertainty on Fr PNC.(Brown PRL 2009)
- \rightarrow R_{skin} varies by a factor of 2 for ²⁰⁹⁻²²¹Fr.
- → Hyperfine anomaly measurements inform $R_{neutron}$ (Grossman PRL 1999).

Searching for New Physics

Francium can reduce experimental systematics !

... what about theoretical systematics ?

Atomic theory uncertainties are continually improving !!! (~1%) (Safronova, Derevianko, Flambaum, etc ...)

Nuclear theory uncertainty is dominated neutron skin radius.

- \rightarrow Determine neutron skin in ²⁰⁸Pb (PREX experiment, RCNP).
- → 1% R_{neutron} error gives a 0.3-0.6% uncertainty on Fr PNC.(Brown PRL 2009)
- \rightarrow R_{skin} varies by a factor of 2 for ²⁰⁹⁻²²¹Fr.
- → Hyperfine anomaly measurements inform $R_{neutron}$ (Grossman PRL 1999).
- Use isotope ratios to cancel out theoretical uncertainties.

→ R_{skin} for different isotopes are correlated.
 (Brown, Derevianko, and Flambaum, PRL 2009; Dieperink and Van Isacker EPJA 2009)
 → Improved sensitivity to new physics (primarily proton couplings).

Alternative: use atomic PNC to measure R_{neutron}.

Motivation 2: Nuclear Spin-Dependent PNC

NSI - Z⁰ exchange (nuclear spin-dependent)

What's an Anapole Moment?

Answer:

Electromagnetic moment produced by a toroidal current.

- \rightarrow Time-reversal conserving.
- \rightarrow PNC toroidal current.
- \rightarrow Localized moment, contact interaction.

dipole current (circular current) anapole current (toroidal current) parity violating (helico-toroidal current)

[A. Weis, U. Fribourg (2003)]

Motivation 2: Nuclear Anapole Moment

For <u>heavy atoms</u>, the anapole moment term dominates.

$$H_{PNC,nsd} = \frac{G}{\sqrt{2}} \frac{K}{I(I+1)} \kappa_{anapole(p,n)} \vec{I} \cdot \vec{\alpha} \rho(\vec{r})$$

e-

e

Motivation 2: Nuclear Anapole Moment

For <u>heavy atoms</u>, the anapole moment term dominates.

$$H_{PNC,nsd} = \frac{G}{\sqrt{2}} \frac{K}{I(I+1)} \kappa_{anapole(p,n)} \vec{I} \cdot \vec{\alpha} \rho(\vec{r})$$

$$\kappa_{anapole(p,n)} = \frac{9}{10} g_{p,n} \frac{\alpha \mu_{p,n}}{m_p \tilde{r}_0} (Z+N)^{2/3}$$

Anapole moment

N

e

 W^{\pm}, Z^0 exchange

in nucleus

e

 $K = (I + 1/2)(-1)^{I+1/2+l}$ I = nuclear spin l = valence nucleon orbitalangular momentum $\alpha = 1/137$ $\mu = nucleon magnetic moment$ $\widetilde{r}_0 = 1.2 \text{ fm} = nucleon radius$

Motivation 2: Nuclear Anapole Moment

For <u>heavy atoms</u>, the anapole moment term dominates.

$$H_{PNC,nsd} = \frac{G}{\sqrt{2}} \frac{K}{I(I+1)} \kappa_{anapole(p,n)} \vec{I} \cdot \vec{\alpha} \rho(\vec{r})$$

$$\kappa_{anapole(p,n)} = \frac{9}{10} g_{p,n} \frac{\alpha \mu_{p,n}}{m_p \tilde{r}_0} (Z+N)^{2/3}$$

 $g_p \sim 4$ and $0.2 < g_n < 1$ characterize the nucleon-nucleus weak potential.

Anapole moment

N

 W^{\pm}, Z^0 exchange

in nucleus

e

 $K = (I + 1/2)(-1)^{I+1/2+l}$ I = nuclear spin l = valence nucleon orbitalangular momentum

 $\alpha = 1/137$

 $\mu =$ nucleon magnetic moment $\tilde{r}_0 = 1.2 \text{ fm} =$ nucleon radius

Motivation 2: Isovector & Isoscalar Nucleon Couplings

Cs anapole (Boulder) and low-energy nuclear PNC measurements produce conflicting constraints on weak meson-nucleon couplings.

Need to understand nuclear structure better.

[Haxton *et al.*, Phys. Rev. C **65**, 045502 (2002) and 6Li(n,α) from Vesna Phys. Rev. C **77**, 035501 (2008)]

Motivation 2: Isovector & Isoscalar Nucleon Couplings

Cs anapole (Boulder) and low-energy nuclear PNC measurements produce conflicting constraints on weak meson-nucleon couplings.

(Desplanques, Donoghue, and Holstein model)

Francium isotopes provide orthogonal constraints !!!

[Haxton *et al.*, *Phys. Rev. C* **65**, 045502 (2002) and 6Li(n,α) from Vesna *Phys. Rev. C* **77**, 035501 (2008)]

FrPNC program: Atomic PNC Experiments in Francium

> Fr is the heaviest of the simple (alkali atoms).

- → Electronic structure is well understood.
- → Particle/nuclear physics can be reliably extracted.
- Fr has large (relatively) PNC mixing.
 - $\rightarrow \epsilon_{PNC} \sim 10^{-10}$ is still really really small ... we're going to need a lot of Fr.
- Fr does not exist sufficiently in nature.

FrPNC program: Atomic PNC Experiments in Francium

> Fr is the heaviest of the simple (alkali atoms).

- → Electronic structure is well understood.
- → Particle/nuclear physics can be reliably extracted.
- Fr has large (relatively) PNC mixing.
 - $\rightarrow \epsilon_{PNC} \sim 10^{-10}$ is still really really small ... we're going to need a lot of Fr.
- Fr does not exist sufficiently in nature.

M1 is strongly suppressed.

M1 is strongly suppressed.

M1 is strongly suppressed.

M1 is strongly suppressed.

Alternative method: PNC energy shift, M.-A. Bouchiat, PRL 100, 123003 (2008).

Anapole Moment in Fr

New Method: Anapole can be measured by driving a parity forbidden E1 transition between two hyperfine states with $\Delta F=\pm 1$, $\Delta m_F=\pm 1$.

 $\pi/2$ pulse preparation: the atoms are prepared in a 50/50 superposition of the initial and final states (equivalent to interference amplification) before application of the microwave driving E-field.

Anapole Moment in Fr

New Method: Anapole can be measured by driving a parity forbidden E1 transition between two hyperfine states with $\Delta F = \pm 1$, $\Delta m_F = \pm 1$.

 $\pi/2$ pulse preparation: the atoms are prepared in a 50/50 superposition of the initial and final states (equivalent to interference amplification) before application of the microwave driving E-field.

Anapole Moment in Fr

New Method: Anapole can be measured by driving a parity forbidden E1 transition between two hyperfine states with $\Delta F=\pm 1$, $\Delta m_F=\pm 1$.

 $\pi/2$ pulse preparation: the atoms are prepared in a 50/50 superposition of the initial and final states (equivalent to interference amplification) before application of the microwave driving E-field.

M1 suppression

M1 hyperfine transition mimics E1_{PNC} and must be suppressed by 10⁹ !!!

a) Suppress B_{microwave}:

Fabry-Perot cavity: Place atoms at B node, E anti-node.

 \rightarrow Suppression: 5×10⁻³.

M1 suppression

M1 hyperfine transition mimics E1_{PNC} and must be suppressed by 10⁹ !!!

a) Suppress B_{microwave}:

Fabry-Perot cavity: Place atoms at B node, E anti-node.

 \rightarrow Suppression: 5×10⁻³.

b) Selection rule:

 $B_{microwave} // B_{DC}$ can only drive $\Delta m_F=0$ transitions.

 \rightarrow Suppression:10⁻³.

M1 suppression

M1 hyperfine transition mimics E1_{PNC} and must be suppressed by 10⁹ !!!

a) Suppress B_{microwave}:

Fabry-Perot cavity: Place atoms at B node, E anti-node.

 \rightarrow Suppression: 5×10⁻³.

b) Selection rule:

 $B_{microwave} // B_{DC}$ can only drive $\Delta m_F=0$ transitions.

 \rightarrow Suppression:10⁻³.

c) Dynamical averaging:

Atomic motion around the B node, averages away M1.

... E_{RF} dipole force provides some self-centering on anti-node.

Simulating Fr Anapole with Rb

180 ms coherence time in blue-detuned dipole trap

($\pi/2$ pulse with Rb)

[Data by D. Sheng (Orozco Group, U. of Maryland)]

A_{PNC} simulated with 10⁻⁴ M1 transition

FrPNC: Current Status

<u>**Present:</u>** Construction of an on-line, shielded laser laboratory at TRIUMF with 100 db RF suppression.</u>

Fall 2011: (13 shifts in December) Installation of high efficiency MOT (from U. of Maryland).

2012: Physics starts !!!

Hyperfine anomaly (Pearson), 7S-8S M1 (Gwinner), Anapole (Orozco), optical PNC (Gwinner), ...

FrPNC: Schedule

2010	2011	201	2	2013	2014	2015	2016		
anapole off-line preparation (Maryland) Rb M1 (Manitoba)									
	а	ctinide targ	jet a	t TRIUMF					
francium trapping facility at TRIUMF operational									
francium hyperfine anomalies E 1010 approved high pri							high prior.		
			ana	pole experim	ent E 1065	approved h	igh prior.		
E 1218 approved high prior.			optical experiments (7s-8s) optical APNC						

FrPNC collaboration

- S. Aubin (College of William and Mary)
- J. A. Behr, K. P. Jackson, M. R. Pearson (TRIUMF)
- V. V. Flambaum (U. of New South Wales, Australia)
- E. Gomez (U. Autonoma de San Luis Potosi, Mexico)
- G. Gwinner, R. Collister (U. of Manitoba)
- D. Melconian (Texas A&M)
- L. A. Orozco, J. Zhang (U. of Maryland at College Park)
- G. D. Sprouse (SUNY Stony Brook)
- Y. Zhao (Shanxi U., China)

Outline

Theory

- A. Motivation 1: Spin-independent PNC
 - \rightarrow Testing the electroweak standard model.
- B. Motivation 2: Spin-dependent PNC
 - → Nuclear anapole moment.
 - \rightarrow Weak meson-nucleon couplings problem.

Experiment

- 1. The FrPNC program
 - \rightarrow Methods.
 - \rightarrow Expected sensitivities.
- 2. Current Status

FrPNC program: Atomic PNC Experiments in Francium

> Fr is the heaviest of the simple (alkali atoms).

- → Electronic structure is well understood.
- → Particle/nuclear physics can be reliably extracted.
- Fr has large (relatively) PNC mixing.
 - $\rightarrow \epsilon_{PNC} \sim 10^{-10}$ is still really really small ... we're going to need a lot of Fr.

Fr does not exist sufficiently in nature.

ISAC facility @ TRIUMF 500 MeV protons (2 μA) on UC (30 g/cm²). Demonstrated production: 10⁷-10⁸ Fr/s

Motivation 2: Nuclear Spin-Dependent PNC

What's an Anapole Moment?

[figure from V. V. Flambaum, Atomic Physics 16: ICAP 16., edited by W. E. Baylis and G. W. F. Drake (AIP, 1998)]

Answer:

Electromagnetic moment produced by a toroidal current.

- \rightarrow Time-reversal conserving.
- \rightarrow PNC toroidal current.
- \rightarrow Localized moment, contact interaction.

$$H_{anapole} = e\vec{\alpha} \cdot \vec{a}\widetilde{\delta}(r)$$

$$\vec{a} = -\pi \int d^3 r \, r^2 \vec{J}(\vec{r})$$
$$= \frac{1}{e} \frac{G}{\sqrt{2}} \frac{K}{j(j+1)} \kappa_{anapole(p,n)} \vec{j}_{p,n}$$

nucleon angular momentum

Neutron nuclear skin radius

Observable	Constraint	Set value	Stability
$A_{Ry}A_{E1}$	Microwave amplitude	$476 \mathrm{~V/cm}$	0.03
$A_{Ry}A_{Ry}$	Raman amplitude	121 rad	2.5×10^{-4}
$(\hbar\delta)^2$	Microwave frequency	$45~\mathrm{GHz}$	10^{-11}
х <i>и</i>	Dipole trap Stark shift	6.3 Hz	0.07
	DC Magnetic field	1500 Gauss	4.7×10^{-5}
$A_{Rx}A_{Rx}$	Raman polarization	$0 \mathrm{rad}$	10^{-3} rad
$A_{Ry}A_{Miy}$	Mirror separation	$13~{ m cm}$	$7.7 imes 10^{-7}$
	Antenna power	$57 \mathrm{~mW}$	0.02
	Antenna phase	$0 \mathrm{rad}$	$0.01 \mathrm{rad}$
$A_{Ry}A_{Mox}$	Mirror birrefringence	$0 \mathrm{rad}$	1×10^{-4} rad
~	Trap displacement	$0 \mathrm{m}$	$3 \times 10^{-11} \text{ m}$

TABLE III. Fractional stability required for a 3% measurement. The observable associated with each constraint is also included.

Motivation 1: Sensitivity to Std. Model extensions

Atomic PNC experiments are sensitive to certain high-energy extensions of the Standard Model.

New Physics	Parameter	Constraint from atomic PNC	Direct constraints from HEP
Oblique radiative corrections	S+0.006T	S = -0.56(60)	$\begin{array}{c} S{=}{-}0.13 \pm 0.1 \ ({-}0.08) \\ T{=}{-}0.13 \pm 0.11 \ ({+}0.09) \end{array}$
Z_x -boson in SO(10) model	$M(\mathbf{Z}_x)$	> 1.4 TeV	> 820 GeV LHC, ILC: > 5 TeV (?)
Leptoquarks	M_S	>0.7 TeV	> 256 GeV, >1200 GeV indir.
Composite Fermions	L	>14 TeV	>6 TeV

Outline

Justification 1: Low-energy parity violation \rightarrow sensitivity to extra neutral bosons.

Justification 2: Anapole moment \rightarrow resolve nucleon-meson weak couplings discrepancy (Cs133 anapole vs. F18/19 gamma)

Why francium?

Brief of History of francium experiments.

Z0 experiment

 \rightarrow expected sensitivity.

Anapole experiment

 \rightarrow expected sensitivity.

Challenges of an accelerator environment ... shielding necessary!!!

Current status: group members, funding, shielded laboratory.

