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Motivation 1:
Nuclear Spin-Independent PNC
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Motivation 1:
Nuclear Spin-Independent PNC
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Motivation 1:
Testing and Probing the Weak Interaction 

Parity Violation = Unique Probe of Weak Interaction

Atomic PNC (APV) experiments test and constrain the Standard Model



Motivation 1:
Testing and Probing the Weak Interaction 

Parity Violation = Unique Probe of Weak Interaction

Atomic PNC (APV) experiments test and constrain the Standard Model

[figure from Young et al., Phys. Rev. Lett. 99, 122003 (2007)]

Effective e--quark couplings C1u & C1d

[figure from Bentz et al. Phys. Lett. B 693, 462 (2010)]

Weak mixing angle



Atomic PNC
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⇒ Electron wavefunction does not have a definite parity !!!

SP  P

PS  S

PNC

PNC

ε

ε

+→

+→
⇒

Parity forbidden transitions 
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(Cs)  10~ 113
,

−∝ RZnsiPNCε

relativistic enhancement factor

( )
( ) ≈Cs
Fr

nsiPNC

nsiPNC

,

,

ε
ε 18

Francium advantage:



Searching for New Physics
Francium can reduce experimental systematics !

… what about theoretical systematics ?
Atomic theory uncertainties are continually improving !!! (~1%)

(Safronova, Derevianko, Flambaum, etc …)

Nuclear theory uncertainty is dominated neutron skin radius.

Determine neutron skin in 208Pb (PREX experiment, RCNP).

1% Rneutron error gives a 0.3-0.6% uncertainty on Fr PNC.(Brown PRL 2009)

Rskin varies by a factor of 2 for 209-221Fr.

Hyperfine anomaly measurements inform Rneutron (Grossman PRL 1999).
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Francium can reduce experimental systematics !

… what about theoretical systematics ?
Atomic theory uncertainties are continually improving !!! (~1%)

(Safronova, Derevianko, Flambaum, etc …)

Nuclear theory uncertainty is dominated neutron skin radius.

Determine neutron skin in 208Pb (PREX experiment, RCNP).

1% Rneutron error gives a 0.3-0.6% uncertainty on Fr PNC.(Brown PRL 2009)

Rskin varies by a factor of 2 for 209-221Fr.

Hyperfine anomaly measurements inform Rneutron (Grossman PRL 1999).

Use isotope ratios to cancel out theoretical uncertainties.

Rskin for different isotopes are correlated.
(Brown, Derevianko, and Flambaum, PRL 2009; Dieperink and Van Isacker EPJA 2009)

Improved sensitivity to new physics (primarily proton couplings). 

Alternative: use atomic PNC to measure Rneutron.



Motivation 2:
Nuclear Spin-Dependent PNC
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What’s an Anapole Moment ?
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Answer:
Electromagnetic moment produced by a 
toroidal current.

Time-reversal conserving.
PNC toroidal current.
Localized moment, contact interaction.

[A. Weis, U. Fribourg (2003)]



Motivation 2:
Nuclear Anapole Moment
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dominates.
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 10.2  and  4~ << np gg characterize
the nucleon-nucleus weak potential.



Motivation 2:
Isovector & Isoscalar Nucleon Couplings

Cs anapole (Boulder) and low-energy nuclear PNC 
measurements produce conflicting constraints on 
weak meson-nucleon couplings.
(Desplanques, Donoghue, and Holstein model)

[Haxton et al., Phys. Rev. C 65, 045502 (2002) and 
6Li(n,α) from Vesna Phys. Rev. C 77, 035501 (2008)]

Need to understand 
nuclear structure 

better.

Measure anapole in a string 
of Fr isotopes



Motivation 2:
Isovector & Isoscalar Nucleon Couplings

[Behr and Gwinner, J. Phys. G 36, 
033101 (2009)]

Francium isotopes 
provide orthogonal 

constraints !!!
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Francium advantage:

N=even

N=odd

Cs anapole (Boulder) and low-energy nuclear PNC 
measurements produce conflicting constraints on 
weak meson-nucleon couplings.
(Desplanques, Donoghue, and Holstein model)

[Haxton et al., Phys. Rev. C 65, 045502 (2002) and 
6Li(n,α) from Vesna Phys. Rev. C 77, 035501 (2008)]



FrPNC program:
Atomic PNC Experiments in Francium

Fr is the heaviest of the simple (alkali atoms).
Electronic structure is well understood.
Particle/nuclear physics can be reliably extracted.

Fr has large (relatively) PNC mixing.
εPNC ~ 10-10 is still really really small … we’re going to need a lot of Fr.

Fr does not exist sufficiently in nature.

+
dipole trap
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Atomic PNC in Fr (NSI)
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Statistical Sensitivity:

M1 is strongly suppressed.

Wieman method:
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Statistical Sensitivity:

M1 is strongly suppressed.

Wieman method:

Alternative method: PNC energy shift, M.-A. Bouchiat, 
PRL 100, 123003 (2008). 



Anapole Moment in Fr

New Method: Anapole can be measured by driving a parity forbidden 
E1 transition between two hyperfine states with ΔF=±1, ΔmF=±1.

π/2 pulse preparation: the atoms are prepared in a 50/50 superposition 
of the initial and final states (equivalent to interference amplification) 
before application of the microwave driving E-field.
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Anapole Moment in Fr

New Method: Anapole can be measured by driving a parity forbidden 
E1 transition between two hyperfine states with ΔF=±1, ΔmF=±1.

π/2 pulse preparation: the atoms are prepared in a 50/50 superposition 
of the initial and final states (equivalent to interference amplification) 
before application of the microwave driving E-field.

FmF ,

',' FmF

2/17S E1PNCM1

for Emicrowave~0.5 kV/cm and 106 atoms.

120~ −−− HznoisetoSignal

[E. Gomez et al., Phys. Rev. A 75, 033418 (2007)] 
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M1 suppression
M1 hyperfine transition mimics E1PNC and must be suppressed by 109 !!!

a) Suppress Bmicrowave:
Fabry-Perot cavity: Place atoms at B 
node, E anti-node.  

Suppression: 5×10-3.
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M1 suppression
M1 hyperfine transition mimics E1PNC and must be suppressed by 109 !!!

a) Suppress Bmicrowave:
Fabry-Perot cavity: Place atoms at B 
node, E anti-node.  

Suppression: 5×10-3.

b) Selection rule:
Bmicrowave // BDC can only drive ΔmF=0 
transitions.  

Suppression:10-3.

c) Dynamical averaging:
Atomic motion around the B node, 
averages away M1.

… ERF dipole force provides some 
self-centering on anti-node.



Simulating Fr Anapole with Rb

180 ms coherence time in 
blue-detuned dipole trap

(π/2 pulse with Rb)

phasePNC

PNC

A

ARateTransition

θcos4/1

2/1 2

±≈

±=

Simulating the PNC Interference

APNC simulated with 10-4 M1 transition

[Data by D. Sheng (Orozco Group, U. of Maryland)]



FrPNC: Current Status
Present: Construction of an on-line, shielded laser laboratory at TRIUMF 
with 100 db RF suppression.

Fall 2011: (13 shifts in December)
Installation of high efficiency MOT 
(from U. of Maryland).

2012: Physics starts !!!

Hyperfine anomaly (Pearson), 7S-8S M1 (Gwinner), 
Anapole (Orozco), optical PNC (Gwinner), …



FrPNC: Schedule
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Outline

Theory

A. Motivation 1: Spin-independent PNC
Testing the electroweak standard model.

B. Motivation 2: Spin-dependent PNC
Nuclear anapole moment.

Weak meson-nucleon couplings problem.

Experiment

1. The FrPNC program
Methods.

Expected sensitivities.

2. Current Status



FrPNC program:
Atomic PNC Experiments in Francium

Fr is the heaviest of the simple (alkali atoms).
Electronic structure is well understood.
Particle/nuclear physics can be reliably extracted.

Fr has large (relatively) PNC mixing.
εPNC ~ 10-10 is still really really small … we’re going to need a lot of Fr.

Fr does not exist sufficiently in nature.

ISAC facility @ TRIUMF
500 MeV protons (2 μA) on UC (30 g/cm2).

Demonstrated production: 107-108 Fr/s+
dipole trap



Motivation 2:
Nuclear Spin-Dependent PNC

e- e-

N N

γ

W±,Z0 exchange 
in nucleus

Anapole moment

e- e-

N N

Z0

NSD - Z0 exchange

Ve

AN

PNC “Hyperfine Interaction”

e- e-

N N

γZ0

Ae

VN

( ) ( ) )(
)12

1
),(2

2/1
),(, rI

II
KGH

WQK
I

npK
K

npanapolensdPNC
rrr

ρκκκα +− +−⋅
+

=



What’s an Anapole Moment ?
e- e-
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Answer:
Electromagnetic moment produced by a 
toroidal current.

Time-reversal conserving.
PNC toroidal current.
Localized moment, contact interaction.

[figure from V. V. Flambaum, Atomic Physics 16: ICAP 16., 
edited by W. E. Baylis and G. W. F. Drake (AIP, 1998)] 
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Neutron nuclear skin radius 





Motivation 1:
Sensitivity to Std. Model extensions

Atomic PNC experiments are sensitive to certain high-energy 
extensions of the Standard Model.

[figure from G. Gwinner and adapted from D. Budker, WEIN 98.]



Outline

Justification 1:  Low-energy parity violation sensitivity to extra neutral 
bosons.

Justification 2:  Anapole moment resolve nucleon-meson weak 
couplings discrepancy (Cs133 anapole vs. F18/19 gamma)

Why francium?

Brief of History  of francium experiments.

Z0 experiment

expected sensitivity.

Anapole experiment

expected sensitivity.

Challenges of an accelerator environment … shielding necessary!!!

Current status: group members, funding, shielded laboratory.






