Proton radius and yZ-contributions : a survey

Marc Vanderhaeghen Johannes Gutenberg Universität, Mainz

Rome, September V - IX, MMXI

size of proton : electric charge radius

proton charge radius

from

muonic hydrogen Lamb shift

Lamb shift measurement in muonic H

extraction of R_E from μH Lamb shift

Muon self-energy, vacuum polarization

 $\Delta E = -0.6677 \text{ meV}$

Many other QED corrections calculated : all of size 0.005 meV or smaller << 0.3 meV</p>

Lamb shift : hadronic corrections (I)

O(α⁵) finite-size correction :
 γγ box diagram

• "3rd Zemach moment" $R_{(2)}^3 = \int d^3 \vec{r_1} \, d^3 \vec{r_2} \, |\vec{r_1} - \vec{r_2}|^3 \, \rho_E(r_1) \, \rho_E(r_2)$ non-rel. calculation Friar (1979) $= \frac{48}{\pi} \int_0^\infty \frac{dQ}{Q^4} \left[G_E^2(Q) - 1 - 2Q^2 G_E(0) \frac{dG_E}{dQ^2}(0) \right]$

recent evaluation Distler, Bernauer, Walcher(2011) $R_{(2)}^3 = 2.85$ (8) fm³ $\rightarrow \Delta E \approx -0.026$ meV

What do we know model independently ?

Lower blob contains both elastic (nucleon) and in-elastic states Information is contained in forward, double virtual Compton scattering

For model estimates, see e.g. recent work of Miller, Thomas, Caroll, Rafelski (2011)

Lamb shift : hadronic corrections (II)

forward, doubly virtual Compton scattering (unpolarized)

• Im
$$T_1(\nu, Q^2) = \frac{1}{4M} F_1(\nu, Q^2)$$

Im $T_2(\nu, Q^2) = \frac{1}{4\nu} F_2(\nu, Q^2)$

Unpolarized forward structure functions

• ΔE evaluated through an integral over Q² and v $\Delta E = \Delta E^{el}$ (non-pole part had been included in previous works) $+ \Delta E^{subtr}$ $subtraction, required for the amplitude T₁ <math>\rightarrow$ T₁(0,Q²) $+ \Delta E^{inel}$ (non-pole part had been included in previous works) (non-pole part had been included in previ

Lamb shift : hadronic corrections (III)

Low-energy expansion of forward, doubly virtual Compton scattering constrains subtraction term $T_1(0,Q^2)$ (as well as models)

effective Hamiltonian :
$$\mathcal{H} = -\frac{1}{2} 4\pi \alpha_E \vec{E}^2 - \frac{1}{2} 4\pi \beta_M \vec{B}^2$$

electric magnetic polarizabilities

$$\lim_{\nu^2, Q^2 \to 0} T_1^{\text{non-Born}}(\nu, Q^2) = \frac{\nu^2}{e^2} (\alpha_E + \beta_M) + \frac{Q^2}{e^2} \beta_M$$

subtraction term for T_1

Numerical evaluations :	(µeV)	Carlson,Vdh (2011)	Pachucki (1999)	Martynenko (2006
	$\Delta E^{ m subt}$	5.3 ± 1.9	1.8	2.3
	ΔE^{inel}	-12.7 ± 0.5	-13.9	-13.8
	ΔE^{el}	-29.5 ± 1.3	-23.0	-23.0
	ΔE	-36.9 ± 2.4	-35.1	-34.5

PRA 84 (2011) 020102 (R) :

 $\Delta E = (-36.9 \pm 2.4) \mu eV$

or about **12%** of the needed correction ...

proton charge radius

from

elastic

ep - scattering

proton electromagnetic form factors

recent cross section data @ MAMI in range $Q^2 = 0.004 - 1 \text{ GeV}^2$

Bernauer et al.

PRL 105 (2010) 242001

see talk : M. Distler

proton electromagnetic form factors

recent data at low $Q^2 \otimes JLAB$ for G_{Ep}/G_{Mp} measuring P_t/P_l Zhan et al.

- R_E: agreement between Bernauer et al. and Zhan et al.
- R_M : disagreement between both Bernauer G_M data 1-1.5 % larger than global fit of Zhan et al.

proton electric charge radius : status

e-p Scattering (I. Sick) CODATA (Hydrogen) MAMI 2010 (J. Bernauer et al.) JLab 2011 (X. Zhan et al.) muonic Hydrogen (R. Pohl et al.)

R_E puzzle : what could it mean ?

• unknown correction ? ...after known constraints have been built in !

Change in Rydberg constant ?

In absence of further (sizeable) corrections, use of muonic extraction of R_E plugged into electron H Lamb shift yields R_{α} which is 4.9 σ away from CODATA value (and factor 4.6 more precise) Pohl et al. (2010)

New physics ?

Example : explain 3.6 σ (g-2)_µ discrepancy AND 7.7 σ R_E discrepancy from µH Lamb shift simultaneously invoking a correction by a hypothetical light boson (mass m_b)

- Muonic Lamb shift : muonic D, muonic ³He measurements planned
- Electronic Lamb shift : higher accuracy measurement very timely
- G_{Ep} measurements at very low Q²

JLAB/Hall B proposal $Q^2 = 2 \times 10^{-4} - 2 \times 10^{-2} GeV^2$ magnetic-spectrometer-free experiment (HyCal)
 ep→ep cross sections normalized to Moller scattering

FSR 2

ISR

forward PV ep scattering

structure function (SF) input

Comparison forward $\gamma\gamma$ box with forward γZ box

forward $\gamma\gamma$ box : data based evaluation possible using forward e.m. SF input $F_{1,2}^{\gamma\gamma}$ (modulo one subtraction !)

forward γZ box : $F_{1,2}^{\gamma Z}$ requires PV inelastic asymmetries in different kinematical regimes

F_{1,2}^{γγ} SF input (Resonance region, DIS region, Regge region)

Sibirtsev, Blunden, Melnitchouk, Thomas (2010)

Isospin dependence of SF

$$F_{1,2}^{\gamma Z} \text{ in DIS} \qquad F_{2}^{\gamma Z} = x \sum_{q \in Q} 2e_{q} g_{q}^{V} f_{q}(x, Q^{2}),$$

$$F_{1,2}^{\gamma Z} \text{ in resonance region} \qquad e_{q}^{2} \text{ for } F_{1,2}^{\gamma \gamma}$$

- **I** = 3/2 resonance : isovector currents \longrightarrow multiply $F_{1,2}^{\gamma\gamma}$ by $(1 + Q_W^p)$ **I** = 1/2 resonance : use SU(6) quark model to relate the couplings
- **background** : more modeling needed, difficult to estimate error reliably models used for isospin rotation : VMD model (ρ , ω , ϕ , ...)

Gorchtein, Horowitz, Ramsey-Musolf
(2011)

Background : responsible for more conservative error estimate (using 2 VMD models)

recent estimates	$\operatorname{Re}_{\gamma Z}^{V}$ (X 10 ⁻³)	Error (x 10-3)
Gorchtein, Horowitz, Ramsey-Musolf (2011)	5.39	± 0.27 (mod.av.) ± 1.88 (backgr.) +0.58 / -0.49 (res.) ± 0.07 (t-dep.)
Sibirtsev, Blunden, Melnitchouk, Thomas (2010)	4.7	+ 1.1 - 0.4
Rislow, Carlson (2011)	5.7	± 0.9

accuracy goal : 2.8 (x 10⁻³)

Proton charge radius

- R_E from μH has 7.7σ difference with determinations based on Lamb shift in electronic H and elastic ep scattering
- Corrections re-visited. Hadronic γγ box corrections can be estimated in a dispersive framework : nucleon pole + inelastic (F_{1,2}) + subtraction (β_M) γγ box corrections : around 12% of discrepancy
- ep-scattering : new measurements determination well in agreement with re-analysis of world data including new JLab data.

difference between both analyses on normalization of G_M at low Q^2 (1% level)

Next steps : new muonic and electronic Lamb shift measurements underway, measurements of G_F to Q² values below 10⁻³ GeV²

$\Rightarrow \gamma Z$ box contributions to Q_W^P

- Sizeable in magnitude (around 7-8 % of Q_w^p for Jlab experiment), dispersive estimate done by several groups
- Error estimate depends largely on model for isospin rotation to extract F_{1,2}^{yZ} accuracy of model estimates : 1.5 3 % of Q_W^p -> OK with 4 % accuracy goal
- Further theory work welcome, corrections less important at lower energies : around 0.4 % of Q_w^p at 137 MeV