Parity Violation in Deep Inelastic Scattering

Paul E. Reimer
Physics Division
Argonne National Laboratory
9 November 2010
Representing the SoLID Collaboration

I. Parity Violation

II. PVDIS Physics Potential
 A. Electroweak Couplings
 B. Charge Symmetry
 C. Higher Twist
 D. Other Physics and Targets: \(d_\nu/u_\nu \);
 Isoscaler EMC effect

III. Experiments: JLab Hall A 6 GeV, JLab Hall C 12 GeV and JLab Hall A SOLID

IV. SIDIS w/SoLID@JLab

This work is supported in part by the U.S. Department of Energy,
Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.
Why measure of parity violation in electron scattering?

- Because it’s hard and physicists like challenges.
- PV gives access to the weak interaction at low energy (well below the mass of the Z^0).

\[
\sigma^l \propto \left| M_{\gamma} + M_{Z^0}^l \right|^2 \quad \sigma^r \propto \left| M_{\gamma} + M_{Z^0}^r \right|^2
\]

\[
A_{PV} = \frac{\sigma^l - \sigma^r}{\sigma^l + \sigma^r} \approx \frac{M_{Z^0}^l - M_{Z^0}^r}{M_{\gamma}}
\]

Graphic from Ray Arnold
Abstract
We have measured parity violating asymmetries in the inelastic scattering of longitudinally polarized electrons from deuterium and hydrogen. For deuterium near $Q^2 = 1.6$ (GeV/c)2 the asymmetry is $(-9.5 \times 10^{-5})Q^2$ with statistical and systematic uncertainties each about 10%
PVDIS variables

\[A_{PV} = \frac{\sigma^l - \sigma^r}{\sigma^l + \sigma^r} \approx \frac{M^l_{Z_0} - M^r_{Z_0}}{M_\gamma} \]

\[\propto - \left(\frac{G_F Q^2}{4\pi\alpha} \right) \left(g^e_A g^T_V + \beta g^e_V g^T_A \right) \]

- The couplings \(g \) depend on electroweak physics as well as on the weak vector and axial-vector hadronic current.

- Both **new physics at high energy scales** as well as interesting **features of hadronic structure** come into play.

- A program with many targets and a broad kinematic range can reveal the physics.

Is the glass half full or half empty?
PVDIS variables

\[A_{\text{iso}} = \frac{\sigma^l - \sigma^r}{\sigma^l + \sigma^r} \]
\[= \left(\frac{3 G_F Q^2}{\pi \alpha 2 \sqrt{2}} \right) \left(2 C_{1u} - C_{1d} (1 + R_s) + Y (2 C_{2u} - C_{2d}) \frac{R}{R + 1} \right) \]
\[R(x, Q^2) = \frac{\sigma^l}{\sigma^r} \approx 0.2 \]
PVDIS variables

\[A_{iso} = \frac{\sigma^l - \sigma^r}{\sigma^l + \sigma^r} \]

\[= -\left(\frac{3G_FQ^2}{\pi\alpha 2\sqrt{2}} \right) \frac{2C_{1u} - C_{1d} (1 + R_s) + Y (2C_{2u} - C_{2d}) R_v}{5 + R_s} \]

\[Y = \frac{1 - (1 - y)^2}{1 + (1 - y)^2 - y^2 \frac{R}{R+1}} \]

\[R(x, Q^2) = \frac{\sigma^l}{\sigma^r} \approx 0.2 \]

Z_{SoLID}? (See talk by J. Erler)

\[C_{1u} = -\frac{1}{2} + \frac{4}{3} \sin^2 \theta_W \approx -0.19 \]
\[C_{1d} = \frac{1}{2} - \frac{2}{3} \sin^2 \theta_W \approx 0.35 \]
\[C_{2u} = -\frac{1}{2} + 2 \sin^2 \theta_W \approx -0.04 \]
\[C_{2d} = \frac{1}{2} - 2 \sin^2 \theta_W \approx 0.04 \]

Cahn and Gilman, PRD 17 1313 (1978) polarized electrons on deuterium
Recall: $\sin^2 \theta_W$ projects couplings onto Standard Model—measurements of couplings to elucidate extensions to the S.M.
Sensitivity: C_1 and C_2 Plots

World's data
Sensitivity: C_1 and C_2 Plots

World’s data
PVDIS variables

\[A_{iso} = \frac{\sigma^l - \sigma^r}{\sigma^l + \sigma^r} \]

\[= -\left(\frac{3G_F Q^2}{\pi \alpha^2 2\sqrt{2}} \right) \frac{2C_{1u} - C_{1d} (1 + R_s)}{5 + R_s} \]

\[Y = \frac{1 - (1 - y)^2}{1 + (1 - y)^2 - y^2 \frac{R}{R+1}} \]

\[R(x, Q^2) = \frac{\sigma^l}{\sigma^r} \approx 0.2 \]

\[R_s(x) = \frac{2S(x)}{U(x) + D(x)} \quad \text{Large } x \to 0 \]

\[R_v(x) = \frac{u_v(x) + d_v(x)}{U(x) + D(x)} \quad \text{Large } x \to 1 \]

QCD

- Parton distributions (u, d, s, c)
- Charge Symmetry (CSV)
- Higher Twist (HT)
- Nuclear Effects (EMC)
QCD: Charge Symmetry Violation

We already know CSV exists:

- u-d mass difference \(\delta m = m_d - m_u \approx 4 \text{ MeV} \)
 \(\delta M = M_n - M_p \approx 1.3 \text{ MeV} \)

- electromagnetic effects

- Direct observation of CSV—very exciting!
- Important implications for PDF’s
- *Could be a* partial explanation of the NuTeV anomaly

For \(A_{PV} \) in electron-\(^{2}\text{H DIS:} \)

MRST PDF global with fit of CSV
Martin, Roberts, Stirling, Thorne Eur Phys J C 35, 325 (04)
QCD: Charge Symmetry Violation

We already know CSV exists:

- u-d mass difference \[\delta m = m_d - m_u \approx 4 \text{ MeV} \]
- d-m mass difference \[\delta M = M_d - M_u \approx 1.3 \text{ MeV} \]
- electromagnetic effects

- Direct observation of CSV—very exciting!
- Important implications for PDF's
- *Could be a partial explanation of the NuTeV anomaly*

For \(A_{PV} \) in electron-\(^2\)H DIS:

MRST PDF global with fit of CSV
Martin, Roberts, Stirling, Thorne Eur Phys J C35, 325 (04)
QCD: Higher Twist

From the Quark Parton Model (QPM) to QCD

1. Add DGLAP evolution
2. Add higher order terms in the Operator Product Expansion (OPE) ↔ Higher Twist Terms

Parton Model—leading twist

Quark-gluon diagram

(a) (b) (c)

Di-quarks

What is a true quark-gluon operator?

FIG. 3. The only gluon operator that we keep is the operator O^9, which can be expressed as a four-quark operator using the equations of motion.

Quark-gluon operators correspond to transverse momentum

QCD equations of motion
QCD: Higher Twist--MRST Fits

\[F_2(x,Q^2) = F_2(x)(1 + D(x)/Q^2) \]

\[Q^2 = \frac{(W^2-M^2)}{(1/x-1)} \]

\[Q_{\text{min}}^2 = Q^2(W=2) \]

<table>
<thead>
<tr>
<th>x</th>
<th>(Q^2_{\text{min}})</th>
<th>D(x)</th>
<th>(D/Q^2_{\text{min}}) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LO</td>
<td>N^3LO</td>
</tr>
<tr>
<td>0.1-0.2</td>
<td>0.5</td>
<td>-.007</td>
<td>0.001</td>
</tr>
<tr>
<td>0.2-0.3</td>
<td>1.0</td>
<td>-.11</td>
<td>0.003</td>
</tr>
<tr>
<td>0.3-0.4</td>
<td>1.7</td>
<td>-.06</td>
<td>-0.001</td>
</tr>
<tr>
<td>0.4-0.5</td>
<td>2.6</td>
<td>.22</td>
<td>0.11</td>
</tr>
<tr>
<td>0.5-0.6</td>
<td>3.8</td>
<td>.85</td>
<td>0.39</td>
</tr>
<tr>
<td>0.6-0.7</td>
<td>5.8</td>
<td>2.6</td>
<td>1.4</td>
</tr>
<tr>
<td>0.7-0.8</td>
<td>9.4</td>
<td>7.3</td>
<td>4.4</td>
</tr>
</tbody>
</table>

If \(C(x) \sim D(x) \), there is large sensitivity at large \(x \).

Order of DGLAP influences size of HT

Higher twist falls slowly compared to PDF’s at large \(x \).
Need Full Phenomenology

\[
\frac{d^2 \sigma}{dx dy}_{EM} \propto 2xy F_1^\gamma + \frac{2}{y} \left(1 - y - \frac{xyM}{2E} \right) F_2^\gamma
\]

\[
F_1^\gamma = F_2^\gamma (1 + R) \rightarrow R = \frac{\sigma_L}{\sigma_T}
\]

\[
\frac{d^2 \sigma}{dx dy}_{yZ}^V \propto \frac{G}{2\sqrt{2\pi}\alpha} \left\{ - g_A \left[2xy F_1^{yZ} + \frac{2}{y} \left(1 - y - \frac{xyM}{2E} \right) F_2^{yZ} \right] \right\}
\]

\[
\frac{d^2 \sigma}{dx dy}_{yZ}^A \propto \frac{G}{2\sqrt{2\pi}\alpha} \left[- g_V x (2 - y) F_3^{yZ} \right]
\]

\[A_{PV}^{yZ} = \sigma_{yZ}^V + \sigma_{yZ}^A\]

There are 5 relevant structure functions

Isospin rotation of \(vd\) charge current

\[F_3^{yZ} = \frac{5}{18} F_3^\gamma\]

Small; use \(v\) data
(Higher twist workshop at Madison, Wisconsin)
Why HT in PVDIS is Special

Bjorken,
PRD 18, 3239 (78)
Wolfenstein,
NPB146, 477 (78)

\[
V_\mu = (\bar{u} \gamma_\mu u - \bar{d} \gamma_\mu d) \Leftrightarrow S_\mu = (\bar{u} \gamma_\mu u + \bar{d} \gamma_\mu d)
\]

Isospin decomposition before using PDF’s

\[
\frac{(C_{1u} - C_{1d}) \langle VV \rangle + \frac{1}{3}(C_{1u} + C_{1d}) \langle SS \rangle}{\langle VV \rangle + \frac{1}{3} \langle SS \rangle} \propto \int \langle D \mid j_\mu(x) J^\nu(0) + J^\mu_0(x) j^\nu(0) \mid D \rangle e^{iq \cdot x} d^4 x
\]

Zero in QPM

HT in F_2 may be dominated by quark-gluon correlations

Vector-hadronic piece only

Use ν data for small $b(x)$ term.
Future PVDIS Measurements at JLab

- JLab Hall A 6 GeV
 See talk by Xiaochao Zheng

- JLab Hall C Baseline Spectrometers (12 GeV)

- JLab Hall A SOLID Spectrometer (12 GeV)
12 GeV Hall C

Baseline equipment

- Measurement with baseline spectrometers
- Sensitive to both Hadronic effects and to Standard Model effects

Approximate Kinematics

<table>
<thead>
<tr>
<th>x_{Bj}</th>
<th>Q^2 (GeV2)</th>
<th>E' (GeV)</th>
<th>Θ (deg)</th>
<th>W^2 (GeV)</th>
<th>A_d (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.35</td>
<td>3.3</td>
<td>6.0</td>
<td>13.5</td>
<td>7.1</td>
<td>-285</td>
</tr>
</tbody>
</table>

Uncertainty ($\delta A_d/A_d \times 10^{-3}$)

<table>
<thead>
<tr>
<th>Source</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical</td>
<td>5.0</td>
</tr>
<tr>
<td>Systematic</td>
<td></td>
</tr>
<tr>
<td>Polarimetry</td>
<td>5</td>
</tr>
<tr>
<td>Q^2</td>
<td>4</td>
</tr>
<tr>
<td>Rad. Corr.</td>
<td>4</td>
</tr>
<tr>
<td>Total Syst.</td>
<td>7.6</td>
</tr>
</tbody>
</table>

If there is something interesting (*Charge Symmetry Violation* or *Standard Model* deviation) the experiment may be able to see it—but baseline equipment expt. cannot tell the difference.
SoLID: A large acceptance apparatus for JLab Hall A

- Moderate running times
 - Large Acceptance
 - High Luminosity on LH2 & LD2
- Better than 1% errors for small bins
- Kinematics:
 - Large Q^2 coverage
 - x-range 0.25-0.75
 - $W^2 > 4$ GeV2

- Spectrometer requirements:
 - Solenoid contains low energy backgrounds (Møller, pions, etc)
Search for a Solenoid

- There are a number of Solenoids available right around Rome
Search for a Solenoid

- There are a number of Solenoids available right around Rome
- And even period appropriate transportation schemes
Step 1: Find a solenoid—“The usual suspects”

- MEGA (Hall D)
- New Hall D design
- All could work within the constraints of our physics needs
- Present effort focused on CLEO Magnet
SoLID: A large acceptance apparatus

- **Moderate running times**
 - Large Acceptance
 - High Luminosity on LH2 & LD2
- **Better than 1% errors for small bins**
- **Kinematics:**
 - Large Q^2 coverage
 - x-range 0.25-0.75
 - $W^2 > 4$ GeV2

- **Spectrometer requirements:**
 - Solenoid contains low energy backgrounds (Møller, pions, etc)
 - Polarized e^- beam (M. Poelker, M. Pitt)
 - Trajectories measured after baffles
 - Fast tracking—GEM (E. Cisbani), particle ID, calorimetry, and pipeline electronics
 - Precision polarimetry (0.4%) (see talks by S. Glamazdin, E. Chudakov, K Aulenbacher A. Narayan, M. Friend)
Statistical Errors (%) vs. Kinematics

Statistical sensitivity for SOLID spectrometer

Error bar $\sigma_A/A(\%)$ shown at center of bins in Q^2, x

- 2 months at 6.6 GeV
- 4 months at 11 GeV
Coherent Program of PVDIS Study

Strategy: requires precise kinematics and broad range

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>Y</th>
<th>Q^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Physics</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>CSV</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Higher Twist</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

- Measure \(A_d \) in **narrow** bins of \(x, Q^2 \) with 0.5% precision
- Cover broad \(Q^2 \) range for \(x \) in \([0.3,0.6]\) to constrain HT
- Search for CSV with \(x \) dependence of \(A_d \) at high \(x \)
- Use \(x > 0.4 \), high \(Q^2 \) to measure a combination of the \(C_{i/q} \)'s

Fit data to:

\[
A_{\text{Meas.}} = A_{\text{SM}} \left[1 + \frac{\beta_{\text{HT}}}{(1 - x)^3 Q^2} + \beta_{\text{CSV}} x^2 \right]
\]
Sensitivity: C_1 and C_2 Plots

World’s data
QCD: Charge Symmetry Violation

\[
\frac{\delta A_{PV}}{A_{PV}} \approx 0.28 \frac{\delta u(x) - \delta d(x)}{u(x) + d(x)}
\]
PVDIS on the Proton: d/u at High x

\[
\alpha^P(x) \approx \frac{u(x) + 0.91d(x)}{u(x) + 0.25d(x)}
\]

Deuteron analysis has large nuclear corrections (Yellow)

A_{PV} for the proton has no such corrections (complementary to BONUS)
CSV in Heavy Nuclei:
EMC Effect

Isovector EMC Effect and the NuTeV Anomaly

I. C. Cloët,¹ W. Bentz,² and A. W. Thomas³
PRL 102, 252301 (2009)

- Mean Field approach to estimate an EMC-like effect for $N \neq Z$ nuclei
- Possible explanation for NuTeV anomaly which used iron target.
CSV in Heavy Nuclei: EMC Effect

\[Q^2 = 5.0 \text{ GeV}^2 \]
CSV in Heavy Nuclei: EMC Effect

\[Q^2 = 5.0 \text{ GeV}^2 \]
What about NuTeV?

Apologies to J. Erler for photoshopping his plot
What about NuTeV?

Apologies to J. Erler for photoshopping his plot

p-n CSV and isoscaler CSV
Bentz, Cloet Londergan, Thomas PLB693 462 2010
What about NuTeV?

Apologies to J. Erler for photoshopping his plot

p-n CSV and isoscaler CSV Bentz, Cloet Londergan, Thomas PLB693 462 2010

Flavor Dependent Shadowing Brodsky PRD70 (2004) 116003
What about NuTeV?

Apologies to J. Erler for photoshopping his plot

p-n CSV and isoscaler CSV
Bentz, Cloet Londergan, Thomas PLB693 462 2010

Flavor Dependent Shadowing
Brodsky PRD70 (2004) 116003

Other Models???
What about NuTeV?

Apologies to J. Erler for photoshopping his plot

proton-neutron CSV:
- tested with A_{PV} fit on deuterium
- Neutron Excess CSV
- tested with Lead target

Paul E. Reimer, PAVI 11

9 September 2010
SIDIS and Transverse Spin with the SoLID Spectrometer

From Jain-ping Chen

9 September 2010
E12-11-007: SIDIS using Longitudinally Pol. 3He and SoLID

a study of spin-orbital correlation

- **Semi-Inclusive DIS π^\pm production**
 - Longitudinally Pol. 3He target effective pol. neutron target, achieved world-best performance
 - SoLID large symmetric acceptance detector, high statistics and better angular modulation separation

- **Extraction of novel TMDs**
 - $A_{UL}(\sin(2\phi_h)) \rightarrow h_{1L}^\perp$
 - $A_{LT}(\cos(\phi_h - \phi_S)) \rightarrow g_{1T}$
 - $A_{LL} \rightarrow g_{1L}$

- **Many predictions available**
 - First Lattice QCD calculation
 - Light-cone quark model and others

- **No GPD Correspondence**
 - Genuine sign of intrinsic transverse motion

- **Links to Collinear PDFs**

 \[h_{1L}^{q(t)}(x) = -x^2 \int \frac{dy}{y^2} h_t^g(y) \]

 \[g_{1T}^{q(t)}(x) = x \int \frac{dy}{y} g_t^q(y) \]

 hep-ph/0603194

- **Lattice QCD, arXiv:0908.1283**

- **Light-Cone CQM, arXiv:0806.2298**
Summary

- Measurements of Parity Violation in Deep Inelastic Scattering contain a wealth of information about:
 - The Standard Model
 - Charge Symmetry (CSV)
 - Higher Twist (HT)

- For the complete picture—to unravel the full richness of the physics reach of this process a dedicated—a large-acceptance spectrometer is needed.

- SoLID will also provide critical nuclear structure test (NuTeV $\sin^2 \theta_W$)

- Large additional program of SI-DIS planned for SoLID spectrometer