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Electron-Deuteron Asymmetry

• Parity Violating asymmetry
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I. INTRODUCTION

In the 1970s parity-violating deep inelastic scattering (PVDIS) of longitudinally polarized

electrons from deuterium played an important role in confirming the Standard Model (SM)

of particle physics [1–3]. The asymmetry

ARL =
σR − σL

σR + σL
, (1)

with σR,L corresponding to the scattering cross-section with positive and negative helicity

electrons respectively, is an excellent probe of the parity-violating electroweak interactions

in the SM. The results of measuring this asymmetry in the early experiments at SLAC led to

the correct description of neutral weak interactions well before the discovery of the Z boson

at CERN and provided a measurement of the weak mixing angle sin2 θW . Since then parity-

violating electron scattering studied from various targets has been studied at JLab [4–7],

MIT/Bates [8, 9], Mainz [10, 11], and SLAC[12] as a tool for probing physics beyond the

SM and hadronic structure. Currently, an active program is underway at JLab to continue

these studies with a new level of precision. The Q-Weak experiment at JLab [13], which will

measure the weak charge of the proton at low electron momentum transfer (Q2), is expected

to measure sin2 θW to within 0.3% making it the most precise test of the running of the

weak mixing angle to date. Furthermore, the recently approved 12 GeV upgrade of CEBAF

at JLab, expected to be completed by 2014, aims to begin the next generation Moller and

electron-deuteron scattering experiments. The SOLID proposal [14] for precision parity-

violating electron-deuteron scattering, approved as part of the 12 GeV upgrade at JLab,

will measure ARL over a wide kinematic range in Q2 and Bjorken-x to within 1% at each

kinematic point. In addition, two high-precision PVDIS experiments with deuterium have

been approved to run at selected kinematic points with the 6 GeV [15] and 12 GeV [16]

beams. However, substantial uncertainties in the theoretical interpretation of such a high

precision measurement of the asymmetry will remain unless various effects contributing to

the asymmetry such as new physics beyond the SM, sea quark distributions, Charge Sym-

metry Violation (CSV), and higher twist contributions are well understood and disentangled

from each other.

The theoretical interpretation of the deuterium asymmetry can be facilitated by express-

ing it in the following form

ARL = −
(

GF Q2

4
√

2πα

)[
ge

AY1
F γZ

1

F γ
1

+ ge
V Y3

F γZ
3

F γ
1

]
. (2)

Here, ge
V (ge

A) are the vector (axial vector) couplings of the Z-boson to the electron; F γ
1 , F γZ

1 ,

and F γZ
3 are the structure functions arising, respectively, from hadronic matrix elements of

the vector electromagnetic (EM) current, interference of the vector EM and vector weak

neutral current (WNC), and interference of the vector EM current and axial vector WNC;
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• current presicion δAPV /APV ∼ 10−6.

• all hadronic effects cancel at leading twist. APV is strong candidate for studying HT

effects.
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• Probe of the parity-violating Weak Neutral Current (WNC) in the 
Standard Model (SM).

• Gave one of the first precise measurements of the weak mixing 
  angle to within 10%.

• Led to a spectacular confirmation of WNC theory of the SM in 
1978 (SLAC).



Electron-Deuteron Asymmetry

• Probe of parity-violating interactions in the Standard Model.
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from Oµν
ud(x), the impact on the asymmetry would likely be too small to be extracted without

further improvements in experimental precision. In this case, however, the planned PVDIS

experiments could in principle provide a theoretically clean probe of possible contributions

from CSV(see Fig. 2) and/or physics beyond the SM. Conversely, the observation of sig-

nificant power corrections to the Y1 term would signal the presence of relatively large and

theoretically interesting quark-quark correlation contributions to the electroweak structure

functions.

Our analysis leading to these conclusions is organized in the remainder of the paper as

follows. In Section II, we provide an overview of the structure of the deuterium asymmetry,

setting the context for our analysis of the twist-four contributions in Section III. In Section

IV we give our MIT Bag Model estimates and compare these with recent parameteriza-

tions of CSV contributions in Section V. We summarize our conclusions in Section VI. In

appendix A, we also recast the argument of [23–25] in the language of the Soft-Collinear

Effective Theory(SCET) [26–28] that shows manifestly that the twist-four matrix element

contributing to the Y1-term satisfies the Callan-Gross relation at tree level in the matching.

II. OVERVIEW

Before presenting the formalism and derivation of our results, we provide an overview of

the structure of the deuterium asymmetry and the context for the higher twist contribu-

tions. The SM parity violating interactions of the electron with the quarks, obtained after

integrating out the Z-boson, are parameterized as

L =
GF√

2

[
ēγµγ5e

(
C1uūγµu + C1dd̄γµd

)
+ ēγµe

(
C2uūγµγ5u + C2dd̄γµγ5d

)]
, (5)

where the coefficients C1q and C1q are given by

C1q = 2ρ̂NCIe
3

(
Iq
3 − 2Qqκ̂ sin2 θ̂W

)
− 1

2
λ̂q

1 (6)

C2q = 2ρ̂NCIq
3

(
Ie
3 − 2Qeκ̂ sin2 θ̂W

)
− 1

2
λ̂q

2 . (7)

Here If
3 is the third component of weak isospin for fermion f , Qf is the electromagnetic

charge, and θ̂W is the weak mixing in the MS scheme. The quantities ρ̂NC , κ̂, and λ̂q
j encode

the effects of electroweak radiative corrections and take on the values one, one, and zero,

respectively, at tree-level, leading to

Ctree
1u = −1

2
+

4

3
sin2 θW , Ctree

1d =
1

2
− 2

3
sin2 θW ,

Ctree
2u = −1

2
+ 2 sin2 θW , Ctree

2d =
1

2
− 2 sin2 θW . (8)

The reason for the high sensitivity of ARL to these interactions is that in the limit of

good isospin and negligible sea quark effects, all hadronic effects are known to cancel in the
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• Led to one of the first measurements of the weak mixing angle
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Electron-Quark Phenomenology

C1u and C1d will be determined to high precision by Qweak, APV Cs

C2u and C2d are small and poorly known: 

! one combination can be accessed in PV DIS

New physics such as compositeness, leptoquarks:

Deviations to C2u and C2d might be fractionally large

A

V

V

A

PV elastic e-p scattering, APV

PV deep inelastic scattering

Moller PV is insensitive to the Cij
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asymmetry at leading order in the twist expansion, corresponding to the parton model limit.

The resulting expression for the asymmetry, known as the Cahn-Gilman (CG) formula [3],

is given at tree-level by

ARL
CG = − GF Q2

2
√

2πα

9

10

[(
1− 20

9
sin2 θW

)
+

(
1− 4 sin2 θW

)1− (1− y)2

1 + (1− y)2

]
. (9)

Here y is the kinematic variable defined as

y =
2P · ($− $′)

2P · $
, (10)

where Pµ, $µ, and $′
µ denote the four momenta of the deuteron, the incoming electron, and

the outgoing electron respectively. In the lab frame, the variable one has y = (E − E ′)/E

where E and E ′ denote of the energies of the incoming and and outgoing electrons. The

corrections to this Cahn-Gilman formula can be parameterized by writing the asymmetry

as

ARL = − GF Q2

2
√

2πα

9

10

[
ã1 + ã2

1− (1− y)2

1 + (1− y)2

]
, (11)

where the parameters ãj (j = 1, 2) are schematically written as

ãj = −2

3
(2Cju − Cjd)

[
1 + Rj(new) + Rj(sea) + Rj(CSV) + Rj(TMC) + Rj(HT)

]
(12)

and Rj(new), Rj(sea), Rj(CSV), Rj(TMC), and Rj(HT) denote respectively corrections

arising from possible new physics beyond the SM, sea quark effects, CSV, target mass

corrections (TMC), and higher twist (HT) contributions. If one is interested in looking for

signals of new physics beyond the SM that can leave a footprint in the asymmetry via the

contributions R1,2(new), it is crucial that all the SM electroweak and hadronic corrections to

the Cahn-Gilman formula in Eq. (12) are under theoretical and experimental control. One

can take an alternative viewpoint and instead view a precision measurement of ARL as a

probe of hadronic physics that modifies the Cahn-Gilman formula as in Eqs.(11) and (12).

The analysis of this paper is focused on the higher twist correction R1(HT) that enters

the ã1 term of the asymmetry. The leading contribution to R1(HT) appears at twist-four,

giving rise to a 1/Q2 power law dependence. In contrast, the leading contribution from

R1(TMC), which will also have a 1/Q2 power law contribution, will be suppressed relative

to R1(HT). The relative suppression of R1(TMC) can be understood by noting that the

derivation of the Cahn-Gilman formula is valid even for a finite target mass so that target

mass corrections will always appear in conjunction with at least one of the already small

effects that correct the Cahn-Gilman formula.

Given that all the remaining contributions to ã1 in Eq. (12) have at most a logarithmic

dependence on Q2, one can, in principle, make a clean extraction of R1(HT) by studing the

Q2 dependence of the ã1 term in the asymmetry. Similar statements can be made for the

All hadronic effects cancel! Clean probe of 
WNC

• All hadronic effects cancel in the asymmetry to first 
approximation;  Cahn-Gilman (CG) formula:

• Hadronic effects appear as small corrections to the CG 
formula.

Electron-Deuteron Asymmetry



Precision Era

• 12 GeV program at JLab to begin 2014:
- Moller
- SoLID, 6 GeV, and 12, GeV experiments

• The focus has shifted from the SM WNC theory to detecting 
hints of physics beyond the SM.
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Figure 1.3: Current and proposed weak mixing angle measurements vs. the energy
scale µ. The three future measurements are located at appropriate µ values but the
vertical locations are arbitrary.

An additional advantage of the proposed measurement, which was not relevant
to the discussion above, is that it would be undertaken at a low 4-momentum transfer
scale, in contrast to the SLC and CERN measurements, both of which were carried
out at the top of the Z0 resonance. This difference in energy scales enhances the
sensitivity of the proposed measurement dramatically to as yet undiscovered super-
weak interactions at the TeV scale, which we discuss in the next section.

A convenient way to track various electroweak measurements is to use sin2 θW

as a bookkeeping parameter. As mentioned earlier in the discussion of the theoret-

    
(J. Erler, M. Ramsey-Musolf)

• Qweak
- Weinberg angle to within 0.3%



Corrections to Cahn-Gilman

• In the precision era, all corrections to CG must be under control
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New physics

Sea quarks

Charge symmetry 
violation

Target mass

Higher 
twist

• Hadronic and electroweak effects must be well understood 
before any claim for evidence of new physics can be made.



Asymmetry as a Probe of Hadronic Physics
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1− (1− y)2

1 + (1− y)2

]
, (11)
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the ã1 term of the asymmetry. The leading contribution to R1(HT) appears at twist-four,

giving rise to a 1/Q2 power law dependence. In contrast, the leading contribution from

R1(TMC), which will also have a 1/Q2 power law contribution, will be suppressed relative

to R1(HT). The relative suppression of R1(TMC) can be understood by noting that the

derivation of the Cahn-Gilman formula is valid even for a finite target mass so that target

mass corrections will always appear in conjunction with at least one of the already small

effects that correct the Cahn-Gilman formula.

Given that all the remaining contributions to ã1 in Eq. (12) have at most a logarithmic
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Figure 10: Projected data with errors for the proposed experiment.

effect depends on strongly on x but is independent of y, in contrast to physics
beyond the Standard Model. This signature will be a powerful method to
demonstrate that CSV is indeed the explanation for any deviation from the
prediction of Equation 12.

7.2 Fitting the PVDIS Data to Untangle the Physics

The observation of CSV is possible with our apparatus only if the effect
varies with x. An x-independent CSV effect would be indistinguishable from
a change in the C1’s. It is quite natural, however, to expect that the x-
dependence is similar to that shown in Figure 9, and we will make that
assumption in our further discussion.

If negligible Q2 and x dependence is observed, we will have to make
plausible assumptions about the form of the possible hadronic effects in order
to untangle the various effects of hadronic and electroweak physics. We plan

23

Projected data with errors for SOLID     
(K.Kumar, P. Souder)

• SOLID plans to measure the asymmetry at the percent level 
   over a wide kinematic range:
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• Precision PV DIS can be a probe of higher twist correlations.

5

asymmetry at leading order in the twist expansion, corresponding to the parton model limit.

The resulting expression for the asymmetry, known as the Cahn-Gilman (CG) formula [3],

is given at tree-level by

ARL
CG = − GF Q2

2
√

2πα

9

10

[(
1− 20

9
sin2 θW

)
+

(
1− 4 sin2 θW

)1− (1− y)2

1 + (1− y)2

]
. (9)

Here y is the kinematic variable defined as

y =
2P · ($− $′)

2P · $
, (10)

where Pµ, $µ, and $′
µ denote the four momenta of the deuteron, the incoming electron, and

the outgoing electron respectively. In the lab frame, one has y = (E − E ′)/E where E and

E ′ denote of the energies of the incoming and and outgoing electrons. The corrections to

this Cahn-Gilman formula can be parameterized by writing the asymmetry as

ARL = − GF Q2

2
√

2πα

9

10

[
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Operator Product Expansion

∼ LµνWµν

T{Jµ(x)Jν(0)} ∼ Γµν

∑

n,k

C(n)
k (x2)O(n)

k (0)

Wilson-Coefficient Local Operator

Optical Theorem
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4

where Ω is the laboratory solid angle of the scattered electron, E ′ is the energy of the

scattered electron, Lµν is the leptonic tensor

Lµν = 2(kµk
′
ν + k′µkν − gµνk · k′), (6)

where kµ and k
′µ denote the initial and final electron momenta respectively and W µν is the

hadronic tensor given by

W µν = Im T µν , T µν = i

∫
d4x eiq·x〈N |T (Jµ(x)Jν(0)) |N〉, (7)

where Jµ is the electromagnetic current of the struck quark and qµ = kµ−k
′µ with q2 = −Q2.

The above form of W µν follows from the optical theorem which relates the imaginary part

of the forward Compton amplitude to the cross-section for fully inclusive scattering off the

initial state nucleon (N). Lorentz and gauge invariance dictate the following general form

for the hadronic tensor

Wµν =

(
qµqν

q2
− gµν

)
F1(x, Q2)

M
+

(
P µ − P · q

q2
qµ

) (
P ν − P · q

q2
qν

)
F2(x, Q2)

νM2
,

where P µ is the initial nucleon momentum and F1,2 are the dimensionless structure functions.

The hadronic tensor W µν , or equivalently the structure functions F1,2, can be written as

series of operator matrix elements with definite twist. This follows from the OPE of the

product of currents, schematically written as

i

∫
d4x eiq·x J(x)J(0) ∼

∞∑

n=0

∑

i,j

Cn
i (Q2, µ2)

(Q2)
τ−2
2

〈Oτ,i
µ1...µn

(0)〉qµ1 . . . qµn , (8)

in the region of large Q2. In Eq.(8), 〈Oτ,i
µ1...µn

(0)〉 denotes the nucleon matrix element of

a traceless and symmetric operator of twist-τ , spin n, and type i, and the Cn
i denote the

Wilson coefficients of the OPE for the corresponding operator. The matching calculation to

determine the Wilson coefficients is done at the scale µ2 ∼ Q2 where the Wilson coefficients

are free of large logarithms. However, the large logarithms of order Q2/ΛQCD remain in

the nucleon matrix elements that must be summed via the renormalization group. Strictly

speaking, the OPE in Eq.(8) is valid in the unphysical region where when Q2 % 2P · q. In

the physical region we actually have 2P · q ≥ Q2 so that all powers of 2P · q/Q2 are kept in

the OPE. Then via a dispersion relation, this OPE in the unphysical region is related to an

OPE of the moments of the structure functions in the physical region. The moments of the

F2 structure function then take the form in Eq.(4). As seen in Eq.(4), the power law scaling

in Q2 of the contribution of each operator is determined by its twist. In the limit of large Q2,

the moments of the structure functions are dominated by twist-2 operators which exhibit

no power law dependence in Q2. This corresponds precisely to the Bjorken scaling of the

structure functions in the language of the OPE. The logarithmic violation of Bjorken scaling

Operator Product expansion

Optical Theorem

• Twist expansion:

• Leading twist gives the parton model.

• Correlation matrix elements beyond parton model suppressed 
by powers of 1/Q^2: Higher Twist Terms
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3

neutral current (WNC), and interference of the vector EM current and axial vector WNC;

and Y1,3 are functions of Bjorken x, the kinematic variable y [see Eq.(10) below] and the

ratios Rγ and RγZ of longitudinal and transverse cross sections for purely EM and WNC-

EM vector current interference cross sections [see Eq. (14) below]. In the SM, at leading

twist and in the absence of CSV effects, the Y1 term in Eq.(2) is independent of y and

depends only on geA and the vector current coupling of the Z-boson to quarks [3]. Since

geV = −1 + 4 sin2 θW ∼ −0.1, the Y1-term dominates the asymmetry, making its scrutiny

particularly important for the interpretation of the Jefferson Lab PVDIS program.

Considerable theoretical effort has been devoted to disentangling the various contribu-

tions to the asymmetry. The effect of twist-four contributions to the asymmetry was first

considered in papers by Bjorken and Wolfenstein [17, 18] more than thirty years ago, where

it was shown to arise from a single, non-local four-quark operator in the limit of good isospin,

negligible sea-quark and CSV effects, and up to corrections in αs(Q2). Quantitative esti-

mates of twist-four effects were first obtained in [19] where the contribution of the spin-two

operators was estimated using the MIT Bag Model. This analysis was extended in [20] to

include corrections to the F3 structure function(see Eq. (13) below). More recently, twist-

four effects to the asymmetry were estimated by the authors of Ref. [21], who considered

the possibility that Rγ #= RγZ at twist-four (see Eq. (14) below). These authors argued that

such a difference could introduce hadronic uncertainties that might impede the extraction

of CSV effects from ARL.

In this paper, we draw on the observations of [17, 18] that the twist-four contribution to

the Y1 term in ARL for deuterium, given in Eq. (2), arises from a single four-quark operator

involving up- and down-quark fields

Oµν
ud(x) =

1

2
[ū(x)γµu(x)d(0)γνd(0) + (u ↔ d)] (3)

to revisit the analysis of Ref. [21]. Noting that the contribution of Oµν
ud(x) to the electroweak

structure functions satisfies the Callan-Gross relation at leading order in the strong coupling,
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• Asymmetry can be brought into the form:
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I. INTRODUCTION

In the 1970s parity-violating deep inelastic scattering (PVDIS) of longitudinally polarized

electrons from deuterium played an important role in confirming the Standard Model (SM)

of particle physics [1–3]. The asymmetry

ARL =
σR − σL

σR + σL
, (1)

with σR,L corresponding to the scattering cross-section with positive and negative helicity

electrons respectively, is an excellent probe of the parity-violating electroweak interactions

in the SM. The results of measuring this asymmetry in the early experiments at SLAC

led to the correct description of neutral weak interactions well before the discovery of the

Z boson at CERN and provided a measurement of the weak mixing angle sin2 θW . Since

then parity-violating electron scattering from various targets has been studied at JLab [4–7],

MIT/Bates [8, 9], Mainz [10, 11], and SLAC[12] as a tool for probing physics beyond the SM

and hadronic structure. Currently, an active program is underway at JLab to continue these

studies with a new level of precision. The Q-Weak experiment [13], which will measure the

weak charge of the proton at low electron momentum transfer (Q2), is expected to determine

sin2 θW to 0.3% precision, making it the most precise test of the running of the weak mixing

angle to date. Furthermore, the recently approved 12 GeV upgrade of CEBAF at JLab,

expected to be completed by 2014, aims to begin the next generation Moller and electron-

deuteron scattering experiments. The SOLID proposal [14] for precision parity-violating

electron-deuteron scattering, approved as part of the 12 GeV upgrade, will measure ARL

over a wide kinematic range in Q2 and Bjorken-x to within 1% at each kinematic point. In

addition, two high-precision PVDIS experiments with deuterium have been approved to run

at selected kinematic points with the 6 GeV [15] and 12 GeV [16] beams. These prospects

for high-precision experimental measurements present new challenges for their theoretical

interpretation. In particular, substantial uncertainties in the theoretical interpretation of the

deep inelastic asymmetries will remain unless various effects contributing to the asymmetry

such as new physics beyond the SM, sea quark distributions, Charge Symmetry Violation

(CSV), and higher twist contributions are well understood and disentangled from each other.

Addressing one aspect of these issues is the subject of this paper.

The theoretical interpretation of the deuterium asymmetry can be facilitated by express-

ing it in the following form

ARL = −
(

GF Q2

4
√

2πα

)[
ge

AY1
F γZ

1

F γ
1

+ ge
V Y3

F γZ
3

F γ
1

]
. (2)

Here, ge
V (ge

A) are the vector (axial vector) couplings of the Z-boson to the electron; F γ
1 , F γZ

1 ,

and F γZ
3 are the structure functions arising, respectively, from hadronic matrix elements of

the vector electromagnetic (EM) current, interference of the vector EM and vector weak

- Dominant term in asymmetry
- Can in principle be 
  kinematically distinguished from 
  second term (independent of y)
- Can be sensitive to only quark-
  quark correlations
- A single twist-4 matrix element 
  determines quark-quark 
  correlations.

- suppressed by small electron vector 
  coupling
- Can be kinematically distinguished 
   from second term(dependent on y)
- Can be sensitive to quark-quark 
  and quark-gluon correlations
- Multiple twist-4 matrix elements 
  determine correlations 
- Can be extracted from neutrino 
  scattering data
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mass corrections will always appear in conjunction with at least one of the already small

effects that correct the Cahn-Gilman formula.

Given that all the remaining contributions to ã1 in Eq. (12) have at most a logarithmic

dependence on Q2, one can, in principle, make a clean extraction of R1(HT) by studing the

Q2 dependence of the ã1 term in the asymmetry. Similar statements can be made for the

higher twist effects R2(HT) that contribute to the ã2 term of the asymmetry. However, the

study of R1(HT) is particularly interesting because the leading contribution to R1(HT) that

arises at twist-four is given entirely by a single matrix element that characterizes quark-quark

correlations in the deuteron as first observed in [17, 18]. This is in contrast to R2(HT), which

receives contributions from several different twist-four matrix elements making it difficult

to interpret the effect of correlations among quarks and gluons in terms of any one of the

these matrix elements.

Before giving the explicit expression for R1(HT) that we derive below, we first review

some of the standard notation used in PVDIS pehenomenology. The general expression for

the asymmetry ARL is given in terms of the five structure functions F γ
1,2 and F γZ

1,2,3 takes the

form [21]

ARL = −
( GF Q2

4
√

2πα

)ge
A

(
2xyF γZ

1 − 2
[
1− 1/y + xM

2E

]
F γZ

2

)
+ ge

V x(2− y)F γZ
3

2xyF γ
1 − 2

[
1− 1/y + xM

2E

]
F γ

2

. (13)

This general expression reduces to the Cahn-Gilman formula when the leading twist and

isospin limits are applied to structure functions and when sea quark and CSV effects are

ignored. The F γZ
1,2 and F γZ

3 structure functions arise from the interference of the electro-

magnetic current with the vector and axial part of the weak neutral current respectively.

The asymmetry is often parameterized in terms of the ratio of the longitudinal to transverse

virtual neutral vector boson cross-sections

Rγ(γZ) ≡ σγ(γZ)
L

σγ(γZ)
T

= r2 F γ(γZ)
2

2xF γ(γZ)
1

− 1, r2 = 1 +
4M2x2

Q2
. (14)

In terms of Rγ(γZ) the asymmetry in Eq. (13) takes the form given in Eq. (2), where the

quantities Y1,3 are defined as

Y1 =

(
1 + RγZ

1 + Rγ

)
1 + (1− y)2 − y2

[
1− r2/(1 + RγZ)

]
− 2xyM/E

1 + (1− y)2 − y2
[
1− r2/(1 + Rγ)

]
− 2xyM/E

,

Y3 =

(
r2

1 + Rγ

)
1− (1− y)2

1 + (1− y)2 − y2
[
1− r2/(1 + Rγ)

]
− 2xyM/E

.

(15)

In this notation, the Y1 and Y3 terms arise from the interference of the electromagnetic

current with the vector and axial-vector weak neutal current respectively.
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• The Y_3 factor has the form:

• We have used the definitions:
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FIG. 1: The estimate of R1(HT ) as a function of the Bjorken variable x for different values of Q2 in
the MIT Bag Model. The curves from the bottom to top correspond to the valuesQ2 = 4, 6, 8, 10, 12
GeV2 respectively.

One of the main results of this paper is that the relation

Rγ = RγZ = r2 − 1, (16)

known to hold at leading twist due to the Callan-Gross relations of the structure functions,

also holds even after the twist-four contributions to R1(HT) are included at tree level.

Equivalently, the relation

Y1 = 1, (17)

is valid at twist-four up to perturbative corrections in αs(Q2). However, the the twist-four

contribution does affect the ratio F γZ
1 /F γ

1 in the Y1-term of Eq. (2) as
[
F γZ
1

F γ
1

]

CG + HT

= −3

5
(2C1u − C1d)

[
1 +R1(HT )

]
(18)

=
9

10
(1− 20

9
sin2 θW )

[
1 +R1(HT)

]
,

where the first term corresponds to the Cahn-Gilman limit and where, in the second line

we have omitted the electroweak radiative corrections for simplicity of presentation as we

will do throughout much of the remainder of the paper. As we show below, R1(HT) is the

twist-four correction which takes the form

R1(HT) =

[
−4

5(1− 20
9 sin2 θW )

]
F du
1

up(x) + dp(x)
.

(19)
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will do throughout much of the remainder of the paper. As we show below, R1(HT) is the

twist-four correction which takes the form

R1(HT) =

[
−4

5(1− 20
9 sin2 θW )

]
F du
1

up(x) + dp(x)
.

(19)
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FIG. 1: The estimate of R1(HT ) as a function of the Bjorken variable x for different values of Q2 in
the MIT Bag Model. The curves from the bottom to top correspond to the valuesQ2 = 4, 6, 8, 10, 12
GeV2 respectively.

One of the main results of this paper is that the relation

Rγ = RγZ = r2 − 1, (16)

known to hold at leading twist due to the Callan-Gross relations of the structure functions,

also holds even after the twist-four contributions to R1(HT) are included at tree level.
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]
,

where the first term corresponds to the Cahn-Gilman limit and where, in the second line

we have omitted the electroweak radiative corrections for simplicity of presentation as we

will do throughout much of the remainder of the paper. As we show below, R1(HT) is the

twist-four correction which takes the form

R1(HT) =
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.
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• Higher twist effects can modify these relations.
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• Considered the possibility that higher twist effects arise 
entirely through the relation:
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FIG. 7: Relative effects on the deuteron PV asymmetry APV
d from the γZ interference ratio

RγZ compared with the Bjorken limit asymmetry APV (0)
d . The baseline result for RγZ = Rγ

(dotted) is compared with the effects of modifying RγZ by ±10% (solid) and ±20% (dot-dashed),

for Q2 = 5 GeV2.

proton asymmetry in Fig. 4, although slightly smaller. The effect on APV
d from the purely

kinematical r2 correction in the Y3 term (with Rγ = 0) is an increase of order 1% over the

Bjorken limit asymmetry in the range 0.5 <∼ x <∼ 0.9. Inclusion of the Rγ ratio cancels the

correction somewhat, reducing it to <∼ 0 − 0.5% for x <∼ 0.6, and to <∼ 0.5 − 1% for x > 0.6.

The effects of a possible difference between RγZ and Rγ are illustrated in Fig. 7 through

the ratio δ(RγZ )APV
d /APV(0)

d , where δ(RγZ )APV
p is the difference between the full and Bjorken

limit asymmetries. As for the proton in Fig. 5, the baseline correction with RγZ = Rγ

(dotted curve) is compared with the effects of modifying RγZ by a constant ±10% (solid)

and ±20% (dot-dashed). This conservative range is, as for the proton, motivated by the

phenomenological study of Rγ and RZ in Ref. [25], and the relatively weak isospin depen-

dence of Rγ [19, 20]. This results in an additional ≈ 0.5% (1%) shift of APV
d for a 10%

(20%) modification relative to the baseline asymmetry for x > 0.5. Such effects will need

to be accounted for if one wishes to compare with the standard model predictions, or when

extracting CSV effects in PDFs, which we discuss in the next section.
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3

neutral current (WNC), and interference of the vector EM current and axial vector WNC;

and Y1,3 are functions of Bjorken x, the kinematic variable y [see Eq.(10) below] and the

ratios Rγ and RγZ of longitudinal and transverse cross sections for purely EM and WNC-

EM vector current interference cross sections [see Eq. (14) below]. In the SM, at leading

twist and in the absence of CSV effects, the Y1 term in Eq.(2) is independent of y and

depends only on geA and the vector current coupling of the Z-boson to quarks [3]. Since

geV = −1 + 4 sin2 θW ∼ −0.1, the Y1-term dominates the asymmetry, making its scrutiny

particularly important for the interpretation of the Jefferson Lab PVDIS program.

Considerable theoretical effort has been devoted to disentangling the various contribu-

tions to the asymmetry. The effect of twist-four contributions to the asymmetry was first

considered in papers by Bjorken and Wolfenstein [17, 18] more than thirty years ago, where

it was shown to arise from a single, non-local four-quark operator in the limit of good isospin,

negligible sea-quark and CSV effects, and up to corrections in αs(Q2). Quantitative esti-

mates of twist-four effects were first obtained in [19] where the contribution of the spin-two

operators was estimated using the MIT Bag Model. This analysis was extended in [20] to

include corrections to the F3 structure function(see Eq. (13) below). More recently, twist-

four effects to the asymmetry were estimated by the authors of Ref. [21], who considered

the possibility that Rγ #= RγZ at twist-four (see Eq. (14) below). These authors argued that

such a difference could introduce hadronic uncertainties that might impede the extraction

of CSV effects from ARL.

In this paper, we draw on the observations of [17, 18] that the twist-four contribution to

the Y1 term in ARL for deuterium, given in Eq. (2), arises from a single four-quark operator

involving up- and down-quark fields

Oµν
ud(x) =

1

2
[ū(x)γµu(x)d(0)γνd(0) + (u ↔ d)] (3)

to revisit the analysis of Ref. [21]. Noting that the contribution of Oµν
ud(x) to the electroweak

structure functions satisfies the Callan-Gross relation at leading order in the strong coupling,

we find that

RγZ = Rγ and Y1 = 1, (4)

at twist-four up to perturbative corrections. Consequently, all twist-four effects entering the

dominant term in the asymmetry reside in the ratio F γZ
1 /F γ

1 .

Using the power law dependence in Q2 of the twist-four effects to the Y1-term it may be

possible, with the precision and the wide kinematic range of the PVDIS program at JLab,

to disentangle twist-four effects from CSV effects depending on their relative overall sizes.

To provide theoretical guidance for such a program, we utilize the MIT Bag Model[22] to

estimate the size and variation of the twist-four contribution with Bjorken-x and Q2 as

shown in Fig. 1. These estimates extend the earlier work of Ref. [20] by allowing for the

x-dependences of the twist-two and twist-four contributions to F γ(γZ)
1 to differ. We find that

• Concluded that:
-20% difference gives a 1% effect in asymmetry
-Could interfere with extraction of CSV effects
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• Our conclusions based on the Bjorken/Wolfenstein argument:

-Twist-4 effects in vector WNC term come only from quark-quark correlations.
-A single 4-quark twist-4 matrix element contributes to the vector WNC term.
- The relation                    holds true at twist-4 up to perturbative corrections.   
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structure functions satisfies the Callan-Gross relation at leading order in the strong coupling,

we find that
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at twist-four up to perturbative corrections. Consequently, all twist-four effects entering the

dominant term in the asymmetry reside in the ratio F γZ
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Using the power law dependence in Q2 of the twist-four effects to the Y1-term it may be

possible, with the precision and the wide kinematic range of the PVDIS program at JLab,

to disentangle twist-four effects from CSV effects depending on their relative overall sizes.

To provide theoretical guidance for such a program, we utilize the MIT Bag Model[22] to

estimate the size and variation of the twist-four contribution with Bjorken-x and Q2 as

shown in Fig. 1. These estimates extend the earlier work of Ref. [20] by allowing for the

x-dependences of the twist-two and twist-four contributions to F γ(γZ)
1 to differ. We find that

2

I. INTRODUCTION

In the 1970s parity-violating deep inelastic scattering (PVDIS) of longitudinally polarized

electrons from deuterium played an important role in confirming the Standard Model (SM)

of particle physics [1–3]. The asymmetry

ARL =
σR − σL

σR + σL
, (1)

with σR,L corresponding to the scattering cross-section with positive and negative helicity

electrons respectively, is an excellent probe of the parity-violating electroweak interactions

in the SM. The results of measuring this asymmetry in the early experiments at SLAC

led to the correct description of neutral weak interactions well before the discovery of the

Z boson at CERN and provided a measurement of the weak mixing angle sin2 θW . Since

then parity-violating electron scattering from various targets has been studied at JLab [4–7],

MIT/Bates [8, 9], Mainz [10, 11], and SLAC[12] as a tool for probing physics beyond the SM

and hadronic structure. Currently, an active program is underway at JLab to continue these

studies with a new level of precision. The Q-Weak experiment [13], which will measure the

weak charge of the proton at low electron momentum transfer (Q2), is expected to determine

sin2 θW to 0.3% precision, making it the most precise test of the running of the weak mixing

angle to date. Furthermore, the recently approved 12 GeV upgrade of CEBAF at JLab,

expected to be completed by 2014, aims to begin the next generation Moller and electron-

deuteron scattering experiments. The SOLID proposal [14] for precision parity-violating

electron-deuteron scattering, approved as part of the 12 GeV upgrade, will measure ARL

over a wide kinematic range in Q2 and Bjorken-x to within 1% at each kinematic point. In

addition, two high-precision PVDIS experiments with deuterium have been approved to run

at selected kinematic points with the 6 GeV [15] and 12 GeV [16] beams. These prospects

for high-precision experimental measurements present new challenges for their theoretical

interpretation. In particular, substantial uncertainties in the theoretical interpretation of the

deep inelastic asymmetries will remain unless various effects contributing to the asymmetry

such as new physics beyond the SM, sea quark distributions, Charge Symmetry Violation

(CSV), and higher twist contributions are well understood and disentangled from each other.

Addressing one aspect of these issues is the subject of this paper.

The theoretical interpretation of the deuterium asymmetry can be facilitated by express-

ing it in the following form

ARL = −
(

GF Q2

4
√

2πα

)[
ge

AY1
F γZ

1

F γ
1

+ ge
V Y3

F γZ
3

F γ
1

]
. (2)

Here, ge
V (ge

A) are the vector (axial vector) couplings of the Z-boson to the electron; F γ
1 , F γZ

1 ,

and F γZ
3 are the structure functions arising, respectively, from hadronic matrix elements of

the vector electromagnetic (EM) current, interference of the vector EM and vector weak

Twist-4 effects
reside in ratio 
of form factors

3
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and Y1,3 are functions of Bjorken x, the kinematic variable y [see Eq.(10) below] and the

ratios Rγ and RγZ of longitudinal and transverse cross sections for purely EM and WNC-
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twist and in the absence of CSV effects, the Y1 term in Eq.(2) is independent of y and
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geV = −1 + 4 sin2 θW ∼ −0.1, the Y1-term dominates the asymmetry, making its scrutiny

particularly important for the interpretation of the Jefferson Lab PVDIS program.
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tions to the asymmetry. The effect of twist-four contributions to the asymmetry was first

considered in papers by Bjorken and Wolfenstein [17, 18] more than thirty years ago, where

it was shown to arise from a single, non-local four-quark operator in the limit of good isospin,

negligible sea-quark and CSV effects, and up to corrections in αs(Q2). Quantitative esti-
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operators was estimated using the MIT Bag Model. This analysis was extended in [20] to

include corrections to the F3 structure function(see Eq. (13) below). More recently, twist-

four effects to the asymmetry were estimated by the authors of Ref. [21], who considered

the possibility that Rγ #= RγZ at twist-four (see Eq. (14) below). These authors argued that

such a difference could introduce hadronic uncertainties that might impede the extraction

of CSV effects from ARL.

In this paper, we draw on the observations of [17, 18] that the twist-four contribution to

the Y1 term in ARL for deuterium, given in Eq. (2), arises from a single four-quark operator

involving up- and down-quark fields

Oµν
ud(x) =

1

2
[ū(x)γµu(x)d(0)γνd(0) + (u ↔ d)] (3)

to revisit the analysis of Ref. [21]. Noting that the contribution of Oµν
ud(x) to the electroweak

structure functions satisfies the Callan-Gross relation at leading order in the strong coupling,

we find that

RγZ = Rγ and Y1 = 1, (4)

at twist-four up to perturbative corrections. Consequently, all twist-four effects entering the

dominant term in the asymmetry reside in the ratio F γZ
1 /F γ

1 .

Using the power law dependence in Q2 of the twist-four effects to the Y1-term it may be

possible, with the precision and the wide kinematic range of the PVDIS program at JLab,

to disentangle twist-four effects from CSV effects depending on their relative overall sizes.

To provide theoretical guidance for such a program, we utilize the MIT Bag Model[22] to

estimate the size and variation of the twist-four contribution with Bjorken-x and Q2 as

shown in Fig. 1. These estimates extend the earlier work of Ref. [20] by allowing for the

x-dependences of the twist-two and twist-four contributions to F γ(γZ)
1 to differ. We find that

Only quark-quark
correlations given by
a single matrix element
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In terms of the above hadronic tensors the F γZ
1,2,3 structure functions are given by

W V ;γZ
µν =

(
− gµν +

qµqν
q2

)F γZ
1

M
+
(
Pµ −

P · q
q2

qµ
)(
Pν −

P · q
q2

qν
) F γZ

2

MP · q ,

WA;γZ
µν =

iεµναβPαqβ

2MP · q F γZ
3 .

(29)

B. Isospin decomposition of structure functions

We now show in the limit of good isospin and negligible sea quark contributions, the

twist-four contributions to the Y1 term in Eq. (2) come purely from four-quark twist-four

operators up to possible higher order perturbative mixing effects involving quark-gluon or

purely gluonic operators. This result was first pointed out in [17, 18]. Here we recast the

argument in the more modern language, derive an explicit expression for the matrix element

of the four-quark twist-four operator as a linear combination of the structure functions F γ
1

and F γZ
1 , and provide a corresponding formula for the shift in the asymmetry, R1(HT).

Moreover, the matrix elements of four-quark twist-four operators are known [23, 24] to

satisfy the Callan-Gross relation. We exploit this property to show that Y1 = 1 up to twist-

four and that the twist-four contribution in the Y1 term lies entirely in the factor F γZ
1 /F γ

1 .

This result implies that the Y1 term in Eq. (2) is in principle a relatively clean probe of

twist-four quark-quark correlations.

Following the notation of Ref. [18], we start with an isospin decomposition of the elec-

tromagnetic current and the vector part of the WNC as

Jµ
γ = vµ +

1

3
sµ −

1

3
λµ,

JV µ
Z = 2

[
(1− 2 sin2 θ)vµ −

2

3
sin2 θsµ − (

1

2
− 2

3
sin2 θ)λµ

]
, (30)

where the isovector, isoscalar, and strange quark currents are, respectively,

vµ =
1

2
(ūγµu− d̄γµd), sµ =

1

2
(ūγµu+ d̄γµd), λµ = s̄γµs (31)

and where we have omitted heavy quark contributions or simplicity (including them is

straightforward). Using this isospin decomposition of the currents in the expressions for

W γ
µν and W V ;γZ

µν given in Eqs.(24) and (28) respectively, we arrive at the following isospin

decomposition for the hadronic tensors

W γ
µν = W vv

µν +
1

9
W ss

µν + · · · ,

W V ;γZ
µν = 2(1− 2 sin2 θ)W vv

µν − 4

9
sin2 θW ss

µν + · · · , (32)
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decomposition for the hadronic tensors

W γ
µν = W vv

µν +
1

9
W ss

µν + · · · ,

W V ;γZ
µν = 2(1− 2 sin2 θ)W vv
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9
sin2 θW ss

µν + · · · , (32)
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In terms of the above hadronic tensors the F γZ
1,2,3 structure functions are given by
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q2

qν
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2

MP · q ,
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µν =
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3 .

(29)
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We now show in the limit of good isospin and negligible sea quark contributions, the

twist-four contributions to the Y1 term in Eq. (2) come purely from four-quark twist-four

operators up to possible higher order perturbative mixing effects involving quark-gluon or

purely gluonic operators. This result was first pointed out in [17, 18]. Here we recast the

argument in the more modern language, derive an explicit expression for the matrix element

of the four-quark twist-four operator as a linear combination of the structure functions F γ
1

and F γZ
1 , and provide a corresponding formula for the shift in the asymmetry, R1(HT).

Moreover, the matrix elements of four-quark twist-four operators are known [23, 24] to

satisfy the Callan-Gross relation. We exploit this property to show that Y1 = 1 up to twist-

four and that the twist-four contribution in the Y1 term lies entirely in the factor F γZ
1 /F γ

1 .

This result implies that the Y1 term in Eq. (2) is in principle a relatively clean probe of

twist-four quark-quark correlations.

Following the notation of Ref. [18], we start with an isospin decomposition of the elec-

tromagnetic current and the vector part of the WNC as

Jµ
γ = vµ +

1

3
sµ −

1

3
λµ,

JV µ
Z = 2

[
(1− 2 sin2 θ)vµ −

2

3
sin2 θsµ − (

1

2
− 2

3
sin2 θ)λµ

]
, (30)

where the isovector, isoscalar, and strange quark currents are, respectively,

vµ =
1

2
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• Isospin decomposition of electromagnetic and vector neutral 
currents:

• Isospin decomposition of electromagnetic and interference 
hadronic tensors

,
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where the dots indicate contributions from strange and heavier quarks and the hadronic

tensors W vv,ss
µν are defined as

W vv
µν =

1

M

∑

X

(2π)3δ(4)(pX − P − q)〈X|vµ|D(P )〉∗〈X|vν |D(P )〉,

=
1

2πM

∫
d4x eiq·x〈D(P )|vµ(x)vν(0)|D(P )〉,

W ss
µν =

1

M

∑

X

(2π)3δ(4)(pX − P − q)〈X|sµ|D(P )〉∗〈X|sν |D(P )〉,

=
1

2πM

∫
d4x eiq·x〈D(P )|sµ(x)sν(0)|D(P )〉.

(33)

We ignore subleading contributions arising from the strange and heavier quarks in this

analysis for simplicity. Contributions to the hadronic tensors involving a product of the

isovector vµ current with the isosinglet sν current vanish by isospin symmetry since the

deuteron is an isoscalar state.

Next we note that the difference of the W vv
µν and W ss

µν hadronic tensors is given by W du
µν

W du
µν = W ss

µν −W vv
µν ,

=
1

2πM

∫
d4x eiq·x〈D(P )|1

2
{d̄(x)γµd(x) ū(0)γνu(0) + (u ↔ d)}|D(P )〉.

(34)

As seen above, the operator in W du
µν is just Odu(x) of Eq.(3) which is manifestly a twist-four,

four-quark operator involving the different up and down flavors of quark bilinears. In the

context of the light cone operator product expansion (OPE), it contains no local operators

involving only two quark or two gluon fields as occur at twist-two since the fields located at

different positions along the light-cone have different flavor.

The relation in Eq. (34) can be understood from the definitions of W vv
µν and W ss

µν given in

Eq. (33) and noting that

vµ(x)vν(0)− sµ(x)sν(0) = −1

2
{d̄(x)γµd(x) ū(0)γνu(0) + (u ↔ d)}. (35)

We now define flavor-dependent structure functions F vv,ss,du
1,2 corresponding to the hadronic

tensors W vv,ss,du
µν as

W vv,ss,du
µν =

(
− gµν +

qµqν
q2

)F vv,ss,du
1

M
+
(
Pµ −

P · q
q2

qµ
)(
Pν −

P · q
q2

qν
)F vv,ss,du

2

MP · q ,

(36)

so that from Eq. (34) we have the relation

F vv
1,2 = F ss

1,2 − F du
1,2, (37)
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Bjorken-Wolfenstein Argument

• Isospin decomposed hadronic tensors:

• Twist-4 quark-quark correlation hadronic tensor:
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{d̄(x)γµd(x) ū(0)γνu(0) + (u ↔ d)}|D(P )〉.

(34)

As seen above, the operator in W du
µν is just Odu(x) of Eq.(3) which is manifestly a twist-four,

four-quark operator involving the different up and down flavors of quark bilinears. In the

context of the light cone operator product expansion (OPE), it contains no local operators

involving only two quark or two gluon fields as occur at twist-two since the fields located at

different positions along the light-cone have different flavor.

The relation in Eq. (34) can be understood from the definitions of W vv
µν and W ss

µν given in

Eq. (33) and noting that

vµ(x)vν(0)− sµ(x)sν(0) = −1

2
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{d̄(x)γµd(x) ū(0)γνu(0) + (u ↔ d)}|D(P )〉.

(34)

As seen above, the operator in W du
µν is just Odu(x) of Eq.(3) which is manifestly a twist-four,

four-quark operator involving the different up and down flavors of quark bilinears. In the

context of the light cone operator product expansion (OPE), it contains no local operators

involving only two quark or two gluon fields as occur at twist-two since the fields located at

different positions along the light-cone have different flavor.

The relation in Eq. (34) can be understood from the definitions of W vv
µν and W ss

µν given in

Eq. (33) and noting that

vµ(x)vν(0)− sµ(x)sν(0) = −1

2
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• Structure Function definitions
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where the dots indicate contributions from strange and heavier quarks and the hadronic

tensors W vv,ss
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W vv
µν =

1

M

∑

X

(2π)3δ(4)(pX − P − q)〈X|vµ|D(P )〉∗〈X|vν |D(P )〉,

=
1

2πM

∫
d4x eiq·x〈D(P )|vµ(x)vν(0)|D(P )〉,

W ss
µν =

1

M

∑

X

(2π)3δ(4)(pX − P − q)〈X|sµ|D(P )〉∗〈X|sν |D(P )〉,

=
1

2πM

∫
d4x eiq·x〈D(P )|sµ(x)sν(0)|D(P )〉.

(33)
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qµqν
q2
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1
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+
(
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)(
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P · q
q2

qν
)F vv,ss,du

2

MP · q ,

(36)

so that from Eq. (34) we have the relation

F vv
1,2 = F ss

1,2 − F du
1,2, (37)
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which allows us to eliminate the F vv
1,2 structure functions in favor of F ss

1,2 and F du
1,2. The

structure functions F γ(γZ)
1,2 can be related to the F vv,ss,du

1,2 structure functions via Eqs. (32)

and (36) as

F γ
1,2 = F vv

1,2 +
1

9
F ss
1,2 =

10

9
F ss
1,2 − F du

1,2,

F γZ
1,2 = 2(1− 20

9
sin2 θ)F ss

1,2 − 2(1− 2 sin2 θ)F du
1,2, (38)

where we have used Eq. (37) to eliminate F vv
1,2 in favor of F ss

1,2 and F du
1,2.

C. Isolating twist-four contribution to the asymmetry

Using Eq. (38) for the structure functions F γ(γZ)
1,2 that appear in Eq. (13), the electron

polarization asymmetry can be brought into the form

ARL = −
( GFQ2

4
√
2πα

)2geA
(
1− 20

9 sin2 θ
)
F ss − 2geA

(
1− 2 sin2 θ

)
Fdu + geV x(2− y)F γZ

3

10
9 F ss − Fdu

,

(39)

where we have introduced the shorthand notation

F ss = 2xyF ss
1 − 2

[
1− 1/y +

xM

2E

]
F ss
2 ,

Fdu = 2xyF du
1 − 2

[
1− 1/y +

xM

2E

]
F du
2 . (40)

Next we note that the leading twist contribution to F ss
1 and F ss

2 satisfies the Callan-Gross

relation so that

F ss
2;LT = 2xF ss

1;LT , (41)

where the subscript LT indicates that this relation generally holds only for the leading twist

contributions. It has also been shown [23–25] that the four-quark twist-four contribution to

F du
1 and F du

2 satisfies the Callan-Gross relation so that

F du
2 = 2xF du

1 . (42)

We outline an alternate derivation of this Callan-Gross relation for F du
1,2 in Appendix A.

Equations (41) and (42) allow us to write

F ss
LT = 2xF ss

1;LT

[
y − 2 + 2/y − xM

E

]
,

Fdu = 2xF du
1

[
y − 2 + 2/y − xM

E

]
, (43)
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I. INTRODUCTION

In the 1970s parity-violating deep inelastic scattering (PVDIS) of longitudinally polarized

electrons from deuterium played an important role in confirming the Standard Model (SM)

of particle physics [1–3]. The asymmetry

ARL =
σR − σL

σR + σL
, (1)

with σR,L corresponding to the scattering cross-section with positive and negative helicity

electrons respectively, is an excellent probe of the parity-violating electroweak interactions

in the SM. The results of measuring this asymmetry in the early experiments at SLAC

led to the correct description of neutral weak interactions well before the discovery of the

Z boson at CERN and provided a measurement of the weak mixing angle sin2 θW . Since

then parity-violating electron scattering from various targets has been studied at JLab [4–7],

MIT/Bates [8, 9], Mainz [10, 11], and SLAC[12] as a tool for probing physics beyond the SM

and hadronic structure. Currently, an active program is underway at JLab to continue these

studies with a new level of precision. The Q-Weak experiment [13], which will measure the

weak charge of the proton at low electron momentum transfer (Q2), is expected to determine

sin2 θW to 0.3% precision, making it the most precise test of the running of the weak mixing

angle to date. Furthermore, the recently approved 12 GeV upgrade of CEBAF at JLab,

expected to be completed by 2014, aims to begin the next generation Moller and electron-

deuteron scattering experiments. The SOLID proposal [14] for precision parity-violating

electron-deuteron scattering, approved as part of the 12 GeV upgrade, will measure ARL

over a wide kinematic range in Q2 and Bjorken-x to within 1% at each kinematic point. In

addition, two high-precision PVDIS experiments with deuterium have been approved to run

at selected kinematic points with the 6 GeV [15] and 12 GeV [16] beams. These prospects

for high-precision experimental measurements present new challenges for their theoretical

interpretation. In particular, substantial uncertainties in the theoretical interpretation of the

deep inelastic asymmetries will remain unless various effects contributing to the asymmetry

such as new physics beyond the SM, sea quark distributions, Charge Symmetry Violation

(CSV), and higher twist contributions are well understood and disentangled from each other.

Addressing one aspect of these issues is the subject of this paper.

The theoretical interpretation of the deuterium asymmetry can be facilitated by express-

ing it in the following form

ARL = −
(

GFQ2

4
√
2πα

)[
geAY1

F γZ
1

F γ
1

+ geV Y3
F γZ
3

F γ
1

]
. (2)

Here, geV (geA) are the vector (axial vector) couplings of the Z-boson to the electron; F γ
1 , F

γZ
1 ,

and F γZ
3 are the structure functions arising, respectively, from hadronic matrix elements of

the vector electromagnetic (EM) current, interference of the vector EM and vector weak

13

These relations allow us to write

Fdu

F ss
LT

=
F du
1

F ss
1;LT

, (44)

Using Eqs.(40), (41), (42), and (44) the terms in Eq. (39) proportional to geA can be brought

into the form

AV
RL = −

( GFQ2

4
√
2πα

)2geA
(
1− 20

9 sin2 θ
)
− 2geA

(
1− 2 sin2 θ

)
Fdu

Fss
LT

10
9 (1−

9
10

Fdu

Fss
LT

)
,

= −
( GFQ2

2
√
2πα

)geA
(
1− 20

9 sin2 θ
)
− geA

(
1− 2 sin2 θ

)
F du
1

F ss
1;LT

10
9 (1−

9
10

F du
1

F ss
1;LT

)
,

= − 9

10

( GFQ2

2
√
2πα

)
geA

{(
1− 20

9
sin2 θ

)
− 1

10

F du
1

F ss
1;LT

+ · · ·
}
,

(45)

where we have used the symbol AV
RL to denote the part of the asymmetry ARL proportional

to geA that arises from an interference of the electromagnetic current with the vector weak

neutral current. The first equality in Eq. (45) is obtained by dividing the numerator and

denominator of the terms proportional to geA in Eq. (39) by F ss and using

Fdu

F ss
=

Fdu

F ss
LT

+ subleading terms, (46)

to make the replacement Fdu

Fss → Fdu

Fss
LT

. The subleading terms above denote contributions

arising from the twist-four matrix element Fdu multiplying subleading twist contributions

to F ss. The second equality in Eq. (45) is obtained by using Eq. (44) and the last equality is

obtained by expanding to linear order in the quantity F du
1 /F ss

1;LT . The expression for ARL
V in

Eq. (45) is just the sum of the leading twist Cahn-Gilman term and a twist-four contribution

from a single four-quark matrix element F du
1 . Comparing to Eqs. (11) and (12) we obtain

the main result of this paper:

R1(HT) = − 9

10

1

(9− 20 sin2 θW )

F du
1

F ss
1;LT

. (47)

We now derive expressions for F ss
1;LT and F du

1 in terms of the F γ(γZ)
1,2 structure functions

which will be useful for phenomenological analyses. The leading twist structure function

F ss
1;LT can be related to the leading twist F γ(γZ)

1;LT structure functions as

F ss
1;LT =

9

10
F γ
1;LT =

1

1− 20
9 sin2 θ

F γZ
1;LT , (48)
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Bjorken-Wolfenstein Argument

• Original structure functions can be written as:

• Asymmetry in terms of original structure functions:

• Y1 term:
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FIG. 1: The estimate of R1(HT ) as a function of the Bjorken variable x for different values of Q2 in
the MIT Bag Model. The curves from the bottom to top correspond to the valuesQ2 = 4, 6, 8, 10, 12
GeV2 respectively.

One of the main results of this paper is that the relation

Rγ = RγZ = r2 − 1, (16)

known to hold at leading twist due to the Callan-Gross relations of the structure functions,

also holds even after the twist-four contributions to R1(HT) are included at tree level.

Equivalently, the relation

Y1 = 1, (17)

is valid at twist-four up to perturbative corrections in αs(Q2). However, the the twist-four

contribution does affect the ratio F γZ
1 /F γ

1 in the Y1-term of Eq. (2) as
[
F γZ
1

F γ
1

]

CG + HT

= −3

5
(2C1u − C1d)

[
1 +R1(HT )

]
(18)

=
9

10
(1− 20

9
sin2 θW )

[
1 +R1(HT)

]
,

where the first term corresponds to the Cahn-Gilman limit and where, in the second line

we have omitted the electroweak radiative corrections for simplicity of presentation as we

will do throughout much of the remainder of the paper. As we show below, R1(HT) is the

twist-four correction which takes the form

R1(HT) =

[
−4

5(1− 20
9 sin2 θW )

]
F du
1

up(x) + dp(x)
.

(19)

• Y1 term:

• Twist-4 correction given by:



• Quark-quark correlation twist-4 operator matrix element:
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D. Equality of Rγ and RγZ at twist-four

While the results in Eqs. (47) and (19) embody the observation of Refs. [17, 18] in

the form of structure functions, the relationship to the parameterization of Eq. (2) for the

asymmetry is not manifest. To make the implications for the latter apparent, we draw on

the analysis of the previous section to show that the relation

Rγ = RγZ (55)

is valid at twist-four, implying that Y1 = 1 up to perturbative corrections in αs(Q2). Using

the following decomposition of the structure functions

F γ(γZ)
1,2 = F γ(γZ)

1,2;LT + δF γ(γZ)
1,2 , (56)

where F γ(γZ)
1,2;LT denotes the leading twist contribution to F γ(γZ)

1,2 and δF γ(γZ)
1,2 denotes the higher

twist contributions, we can write

Rγ(γZ) = r2
F γ(γZ)
2;LT + δF γ(γZ)

2

2xF γ(γZ)
1;LT

[
1− δF γ(γZ)

1

F γ(γZ)
1;LT

]
− 1 + · · · ,

= r2
[
1 +

δF γ(γZ)
2 − 2xδF γ(γZ)

1

2xF γ(γZ)
1;LT

]
− 1 + · · · , (57)

where we have expanded δF γ(γZ)
1,2 and the dots denote terms suppressed by higher powers

of Q2. In what follows we only keep terms up to twist-four and suppress + · · · terms in

Eq.(57). From this relation it follows that

1 +RγZ

1 +Rγ
= 1 +

δF γZ
2 − 2xδF γZ

1

2xF γZ
1;LT

− δF γ
2 − 2xδF γ

1

2xF γ
1;LT

. (58)

Using Eq. (38) we can write

F γ
1,2;LT =

10

9
F ss
1,2;LT , F γZ

1,2;LT = 2(1− 20

9
sin2 θ)F ss

1,2;LT ,

δF γ
1,2 =

10

9
δF ss

1,2 − F du
1,2, δF γZ

1,2 = 2(1− 20

9
sin2 θ)δF ss

1,2 − 2(1− 2 sin2 θ)F du
1,2, (59)

where δF ss
1,2 denotes the contribution to F ss

1,2 from terms beyond twist-2. Using the expres-

sions in Eq. (59) in Eq. (58) we arrive at

1 +RγZ

1 +Rγ
= 1 +

(F du
2 − 2xF du

1 )

2xF ss
1;LT

[ 9

10
− 1− 2 sin2 θ

1− 20
9 sin2 θ

]
. (60)

Now using Eq. (42) we arrive at the result

1 +RγZ

1 +Rγ
= 1, (61)
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D. Equality of Rγ and RγZ at twist-four

While the results in Eqs. (47) and (19) embody the observation of Refs. [17, 18] in

the form of structure functions, the relationship to the parameterization of Eq. (2) for the

asymmetry is not manifest. To make the implications for the latter apparent, we draw on

the analysis of the previous section to show that the relation

Rγ = RγZ (55)

is valid at twist-four, implying that Y1 = 1 up to perturbative corrections in αs(Q2). Using

the following decomposition of the structure functions

F γ(γZ)
1,2 = F γ(γZ)

1,2;LT + δF γ(γZ)
1,2 , (56)

where F γ(γZ)
1,2;LT denotes the leading twist contribution to F γ(γZ)

1,2 and δF γ(γZ)
1,2 denotes the higher

twist contributions, we can write

Rγ(γZ) = r2
F γ(γZ)
2;LT + δF γ(γZ)

2

2xF γ(γZ)
1;LT

[
1− δF γ(γZ)

1

F γ(γZ)
1;LT

]
− 1 + · · · ,

= r2
[
1 +

δF γ(γZ)
2 − 2xδF γ(γZ)

1

2xF γ(γZ)
1;LT

]
− 1 + · · · , (57)

where we have expanded δF γ(γZ)
1,2 and the dots denote terms suppressed by higher powers

of Q2. In what follows we only keep terms up to twist-four and suppress + · · · terms in

Eq.(57). From this relation it follows that

1 +RγZ

1 +Rγ
= 1 +

δF γZ
2 − 2xδF γZ

1

2xF γZ
1;LT

− δF γ
2 − 2xδF γ

1

2xF γ
1;LT

. (58)

Using Eq. (38) we can write

F γ
1,2;LT =

10

9
F ss
1,2;LT , F γZ

1,2;LT = 2(1− 20

9
sin2 θ)F ss

1,2;LT ,

δF γ
1,2 =

10

9
δF ss

1,2 − F du
1,2, δF γZ

1,2 = 2(1− 20

9
sin2 θ)δF ss

1,2 − 2(1− 2 sin2 θ)F du
1,2, (59)

where δF ss
1,2 denotes the contribution to F ss

1,2 from terms beyond twist-2. Using the expres-

sions in Eq. (59) in Eq. (58) we arrive at

1 +RγZ

1 +Rγ
= 1 +

(F du
2 − 2xF du

1 )

2xF ss
1;LT

[ 9

10
− 1− 2 sin2 θ

1− 20
9 sin2 θ

]
. (60)

Now using Eq. (42) we arrive at the result

1 +RγZ

1 +Rγ
= 1, (61)
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Here up(x), dp(x) are the up and down quark parton distribution functions (PDFs) in the

proton respectively2 , and the F ud
1 structure function arises from the four-quark operator

Oµν
ud defined in Eq. (3). The structure function F du

1 contributes to both the F γ
1 and F γZ

1

structure functions and satisfies the Callan-Gross relation

F du
2 = 2xF du

1 , (20)

where F du
2 is the corresponding twist-four contribution to F γZ

2 and F γ
2 . The exact definitions

of F du
1,2 are given in Eqs.(34) and (36). We show below that F du

1 can be written as a linear

combination of F γ
1 and F γZ

1 as

F du
1 = (9− 20 sin2 θW )F γ

1 − 5F γZ
1 , (21)

which implies that the leading twist effects and all other twist-four contributions to F γ
1 and

F γZ
1 cancel out in the combination on the RHS of Eq. (21) leaving only the contribution

of twist-four four-quark operator matrix element encoded in F du
1 . In deriving Eq. (21) we

have assumed good SU(2)-isospin and ignored sea-quark effects which will give subleading

corrections.

We also perform a sensitivity analysis of the asymmetry toR1(HT) by providing numerical

estimates for R1(HT ), including the x-dependence and Q2 dependence, in the MIT Bag

Model following the analysis in [32, 33]. We find that typically the effects of R1(HT ) on

the asymmetry are less than 0.5% for moderate values Bjorken x in the range 4 GeV2 <

Q2 < 12GeV2 as shown in Fig. 1. Corrections of this scale are likely to be too small to

be observed with the planned JLab PVDIS experiments. The absence of any experimental

evidence for 1/Q2 variation in the ã1 term of the asymmetry would be consistent with this

expectation and would imply that a determination of this quantity could be used to probe

effects arising either from CSV or new physics. Conversely, the observation of a significant

power correction could point to interesting quark-quark correlations in the nucleon that are

not encapsulated in the simple MIT bag model wavefunction.

III. ISOLATING THE TWIST-FOUR CONTRIBUTION

A. Structure Functions

In this section we review the basic phenomenology and conventions for electron-deuteron

PVDIS. The differential cross-section for electron-deuteron scattering takes the general form

d2σ

dΩdE ′ =
α2

Q4

E ′

E

(
Lγ
µνW

µν
γ − GFQ2

4
√
2πα

LγZ
µνW

µν
γZ

)
, (22)

2 Rigorously-speaking, the sea distributions ūp(x) and d̄p(x) also contribute to the denominator of Eq. ((19).

In practice, their contribution is negligible for the kinematics of interest here.

3

neutral current (WNC), and interference of the vector EM current and axial vector WNC;

and Y1,3 are functions of Bjorken x, the kinematic variable y [see Eq.(10) below] and the

ratios Rγ and RγZ of longitudinal and transverse cross sections for purely EM and WNC-

EM vector current interference cross sections [see Eq. (14) below]. In the SM, at leading

twist and in the absence of CSV effects, the Y1 term in Eq.(2) is independent of y and

depends only on geA and the vector current coupling of the Z-boson to quarks [3]. Since

geV = −1 + 4 sin2 θW ∼ −0.1, the Y1-term dominates the asymmetry, making its scrutiny

particularly important for the interpretation of the Jefferson Lab PVDIS program.

Considerable theoretical effort has been devoted to disentangling the various contribu-

tions to the asymmetry. The effect of twist-four contributions to the asymmetry was first

considered in papers by Bjorken and Wolfenstein [17, 18] more than thirty years ago, where

it was shown to arise from a single, non-local four-quark operator in the limit of good isospin,

negligible sea-quark and CSV effects, and up to corrections in αs(Q2). Quantitative esti-

mates of twist-four effects were first obtained in [19] where the contribution of the spin-two

operators was estimated using the MIT Bag Model. This analysis was extended in [20] to

include corrections to the F3 structure function(see Eq. (13) below). More recently, twist-

four effects to the asymmetry were estimated by the authors of Ref. [21], who considered

the possibility that Rγ #= RγZ at twist-four (see Eq. (14) below). These authors argued that

such a difference could introduce hadronic uncertainties that might impede the extraction

of CSV effects from ARL.

In this paper, we draw on the observations of [17, 18] that the twist-four contribution to

the Y1 term in ARL for deuterium, given in Eq. (2), arises from a single four-quark operator

involving up- and down-quark fields

Oµν
ud(x) =

1

2
[ū(x)γµu(x)d(0)γνd(0) + (u ↔ d)] (3)

to revisit the analysis of Ref. [21]. Noting that the contribution of Oµν
ud(x) to the electroweak

structure functions satisfies the Callan-Gross relation at leading order in the strong coupling,

we find that

RγZ = Rγ and Y1 = 1, (4)

at twist-four up to perturbative corrections. Consequently, all twist-four effects entering the

dominant term in the asymmetry reside in the ratio F γZ
1 /F γ

1 .

Using the power law dependence in Q2 of the twist-four effects to the Y1-term it may be

possible, with the precision and the wide kinematic range of the PVDIS program at JLab,

to disentangle twist-four effects from CSV effects depending on their relative overall sizes.

To provide theoretical guidance for such a program, we utilize the MIT Bag Model[22] to

estimate the size and variation of the twist-four contribution with Bjorken-x and Q2 as

shown in Fig. 1. These estimates extend the earlier work of Ref. [20] by allowing for the

x-dependences of the twist-two and twist-four contributions to F γ(γZ)
1 to differ. We find that

    
(R.Ellis,W.Furmanski,R.Petronzio; X.Ji; J.Qiu)
•  We also give an effective field theory (SCET) argument    

(SM, M. Ramsey-Musolf, G.Sacco)
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D. Equality of Rγ and RγZ at twist-four

While the results in Eqs. (47) and (19) embody the observation of Refs. [17, 18] in

the form of structure functions, the relationship to the parameterization of Eq. (2) for the

asymmetry is not manifest. To make the implications for the latter apparent, we draw on

the analysis of the previous section to show that the relation

Rγ = RγZ (55)

is valid at twist-four, implying that Y1 = 1 up to perturbative corrections in αs(Q2). Using

the following decomposition of the structure functions

F γ(γZ)
1,2 = F γ(γZ)

1,2;LT + δF γ(γZ)
1,2 , (56)

where F γ(γZ)
1,2;LT denotes the leading twist contribution to F γ(γZ)

1,2 and δF γ(γZ)
1,2 denotes the higher

twist contributions, we can write

Rγ(γZ) = r2
F γ(γZ)
2;LT + δF γ(γZ)

2

2xF γ(γZ)
1;LT

[
1− δF γ(γZ)

1

F γ(γZ)
1;LT

]
− 1 + · · · ,

= r2
[
1 +

δF γ(γZ)
2 − 2xδF γ(γZ)

1

2xF γ(γZ)
1;LT

]
− 1 + · · · , (57)

where we have expanded δF γ(γZ)
1,2 and the dots denote terms suppressed by higher powers

of Q2. In what follows we only keep terms up to twist-four and suppress + · · · terms in

Eq.(57). From this relation it follows that

1 +RγZ

1 +Rγ
= 1 +

δF γZ
2 − 2xδF γZ

1

2xF γZ
1;LT

− δF γ
2 − 2xδF γ

1

2xF γ
1;LT

. (58)

Using Eq. (38) we can write

F γ
1,2;LT =

10

9
F ss
1,2;LT , F γZ

1,2;LT = 2(1− 20

9
sin2 θ)F ss

1,2;LT ,

δF γ
1,2 =

10

9
δF ss

1,2 − F du
1,2, δF γZ

1,2 = 2(1− 20

9
sin2 θ)δF ss

1,2 − 2(1− 2 sin2 θ)F du
1,2, (59)

where δF ss
1,2 denotes the contribution to F ss

1,2 from terms beyond twist-2. Using the expres-

sions in Eq. (59) in Eq. (58) we arrive at

1 +RγZ

1 +Rγ
= 1 +

(F du
2 − 2xF du

1 )

2xF ss
1;LT

[ 9

10
− 1− 2 sin2 θ

1− 20
9 sin2 θ

]
. (60)

Now using Eq. (42) we arrive at the result

1 +RγZ

1 +Rγ
= 1, (61)

• Using the Callan-Gross relation at tree level we get:

2

I. INTRODUCTION

In the 1970s parity-violating deep inelastic scattering (PVDIS) of longitudinally polarized

electrons from deuterium played an important role in confirming the Standard Model (SM)

of particle physics [1–3]. The asymmetry

ARL =
σR − σL

σR + σL
, (1)

with σR,L corresponding to the scattering cross-section with positive and negative helicity

electrons respectively, is an excellent probe of the parity-violating electroweak interactions

in the SM. The results of measuring this asymmetry in the early experiments at SLAC

led to the correct description of neutral weak interactions well before the discovery of the

Z boson at CERN and provided a measurement of the weak mixing angle sin2 θW . Since

then parity-violating electron scattering from various targets has been studied at JLab [4–7],

MIT/Bates [8, 9], Mainz [10, 11], and SLAC[12] as a tool for probing physics beyond the SM

and hadronic structure. Currently, an active program is underway at JLab to continue these

studies with a new level of precision. The Q-Weak experiment [13], which will measure the

weak charge of the proton at low electron momentum transfer (Q2), is expected to determine

sin2 θW to 0.3% precision, making it the most precise test of the running of the weak mixing

angle to date. Furthermore, the recently approved 12 GeV upgrade of CEBAF at JLab,

expected to be completed by 2014, aims to begin the next generation Moller and electron-

deuteron scattering experiments. The SOLID proposal [14] for precision parity-violating

electron-deuteron scattering, approved as part of the 12 GeV upgrade, will measure ARL

over a wide kinematic range in Q2 and Bjorken-x to within 1% at each kinematic point. In

addition, two high-precision PVDIS experiments with deuterium have been approved to run

at selected kinematic points with the 6 GeV [15] and 12 GeV [16] beams. These prospects

for high-precision experimental measurements present new challenges for their theoretical

interpretation. In particular, substantial uncertainties in the theoretical interpretation of the

deep inelastic asymmetries will remain unless various effects contributing to the asymmetry

such as new physics beyond the SM, sea quark distributions, Charge Symmetry Violation

(CSV), and higher twist contributions are well understood and disentangled from each other.

Addressing one aspect of these issues is the subject of this paper.

The theoretical interpretation of the deuterium asymmetry can be facilitated by express-

ing it in the following form

ARL = −
(

GF Q2

4
√

2πα

)[
ge

AY1
F γZ

1

F γ
1

+ ge
V Y3

F γZ
3

F γ
1

]
. (2)

Here, ge
V (ge

A) are the vector (axial vector) couplings of the Z-boson to the electron; F γ
1 , F γZ

1 ,

and F γZ
3 are the structure functions arising, respectively, from hadronic matrix elements of

the vector electromagnetic (EM) current, interference of the vector EM and vector weak

twist-4 quark-quark correlations
reside in ratio of structure 

functions

free of twist-4 effects

3

neutral current (WNC), and interference of the vector EM current and axial vector WNC;

and Y1,3 are functions of Bjorken x, the kinematic variable y [see Eq.(10) below] and the

ratios Rγ and RγZ of longitudinal and transverse cross sections for purely EM and WNC-

EM vector current interference cross sections [see Eq. (14) below]. In the SM, at leading

twist and in the absence of CSV effects, the Y1 term in Eq.(2) is independent of y and

depends only on geA and the vector current coupling of the Z-boson to quarks [3]. Since

geV = −1 + 4 sin2 θW ∼ −0.1, the Y1-term dominates the asymmetry, making its scrutiny

particularly important for the interpretation of the Jefferson Lab PVDIS program.

Considerable theoretical effort has been devoted to disentangling the various contribu-

tions to the asymmetry. The effect of twist-four contributions to the asymmetry was first

considered in papers by Bjorken and Wolfenstein [17, 18] more than thirty years ago, where

it was shown to arise from a single, non-local four-quark operator in the limit of good isospin,

negligible sea-quark and CSV effects, and up to corrections in αs(Q2). Quantitative esti-

mates of twist-four effects were first obtained in [19] where the contribution of the spin-two

operators was estimated using the MIT Bag Model. This analysis was extended in [20] to

include corrections to the F3 structure function(see Eq. (13) below). More recently, twist-

four effects to the asymmetry were estimated by the authors of Ref. [21], who considered

the possibility that Rγ #= RγZ at twist-four (see Eq. (14) below). These authors argued that

such a difference could introduce hadronic uncertainties that might impede the extraction

of CSV effects from ARL.

In this paper, we draw on the observations of [17, 18] that the twist-four contribution to

the Y1 term in ARL for deuterium, given in Eq. (2), arises from a single four-quark operator

involving up- and down-quark fields

Oµν
ud(x) =

1

2
[ū(x)γµu(x)d(0)γνd(0) + (u ↔ d)] (3)

to revisit the analysis of Ref. [21]. Noting that the contribution of Oµν
ud(x) to the electroweak

structure functions satisfies the Callan-Gross relation at leading order in the strong coupling,

we find that

RγZ = Rγ and Y1 = 1, (4)

at twist-four up to perturbative corrections. Consequently, all twist-four effects entering the

dominant term in the asymmetry reside in the ratio F γZ
1 /F γ

1 .

Using the power law dependence in Q2 of the twist-four effects to the Y1-term it may be

possible, with the precision and the wide kinematic range of the PVDIS program at JLab,

to disentangle twist-four effects from CSV effects depending on their relative overall sizes.

To provide theoretical guidance for such a program, we utilize the MIT Bag Model[22] to

estimate the size and variation of the twist-four contribution with Bjorken-x and Q2 as

shown in Fig. 1. These estimates extend the earlier work of Ref. [20] by allowing for the

x-dependences of the twist-two and twist-four contributions to F γ(γZ)
1 to differ. We find that
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FIG. 1: The estimate of R1(HT ) as a function of the Bjorken variable x for different values of Q2 in
the MIT Bag Model. The curves from the bottom to top correspond to the valuesQ2 = 4, 6, 8, 10, 12
GeV2 respectively.

One of the main results of this paper is that the relation

Rγ = RγZ = r2 − 1, (16)

known to hold at leading twist due to the Callan-Gross relations of the structure functions,

also holds even after the twist-four contributions to R1(HT) are included at tree level.

Equivalently, the relation

Y1 = 1, (17)

is valid at twist-four up to perturbative corrections in αs(Q2). However, the the twist-four

contribution does affect the ratio F γZ
1 /F γ

1 in the Y1-term of Eq. (2) as
[
F γZ
1

F γ
1

]

CG + HT

= −3

5
(2C1u − C1d)

[
1 +R1(HT )

]
(18)

=
9

10
(1− 20

9
sin2 θW )

[
1 +R1(HT)

]
,

where the first term corresponds to the Cahn-Gilman limit and where, in the second line

we have omitted the electroweak radiative corrections for simplicity of presentation as we

will do throughout much of the remainder of the paper. As we show below, R1(HT) is the

twist-four correction which takes the form

R1(HT) =

[
−4

5(1− 20
9 sin2 θW )

]
F du
1

up(x) + dp(x)
.

(19)
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FIG. 1: The estimate of R1(HT ) as a function of the Bjorken variable x for different values of Q2 in
the MIT Bag Model. The curves from the bottom to top correspond to the valuesQ2 = 4, 6, 8, 10, 12
GeV2 respectively.

One of the main results of this paper is that the relation

Rγ = RγZ = r2 − 1, (16)

known to hold at leading twist due to the Callan-Gross relations of the structure functions,

also holds even after the twist-four contributions to R1(HT) are included at tree level.

Equivalently, the relation

Y1 = 1, (17)

is valid at twist-four up to perturbative corrections in αs(Q2). However, the the twist-four

contribution does affect the ratio F γZ
1 /F γ

1 in the Y1-term of Eq. (2) as
[
F γZ
1

F γ
1

]

CG + HT

= −3

5
(2C1u − C1d)

[
1 +R1(HT )

]
(18)

=
9

10
(1− 20

9
sin2 θW )

[
1 +R1(HT)

]
,

where the first term corresponds to the Cahn-Gilman limit and where, in the second line

we have omitted the electroweak radiative corrections for simplicity of presentation as we

will do throughout much of the remainder of the paper. As we show below, R1(HT) is the

twist-four correction which takes the form

R1(HT) =

[
−4

5(1− 20
9 sin2 θW )

]
F du
1

up(x) + dp(x)
.

(19)

• Bag model estimate of quark-quark correlation is below the 
half-percent level.

• Estimates using multi-parton nucleon light-cone wave 
functions, found an effect twice as big. (Belitsky, Manashov, Schafer)
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• Negligible higher twist effects can allow for a cleaner 
extraction of CSV or new physics effects.
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FIG. 2: The relative magnitudes of R1(HT ) and R1(CSV ) as a function of the Bjorken-x variable
for a representative value of Q2 = 6 GeV2. using δu−δd = 2κf(x) where f(x) = x−1/2(1−x)4(x−
0.0909) for κ = −0.8. The top curve and bottom curves give R1(CSV ) for the choices κ = −0.8
and κ = 0.65 respectively in Eqs.(77) and (78). The middle curve is the MIT Bag Model estimate
for R1(HT ).

VI. CONCLUSIONS

Parity-violating electron scattering has become a powerful tool for probing both novel

aspects of hadronic and nuclear structure as well as possible indirect signatures of physics

beyond the Standard Model. Its efficacy depends on both significant experimental advances

in controlling systematic uncertainties and attaining high statistics as well as on substantial

developments in the theoretical interpretation of the parity-violating asymmetries. PVDIS

represents a prime example of this synergy between experiment and theory. The first mea-

surements of the deep inelastic asymmetry for a deuterium target relied on the simplest

parton-level description of hadrons, yet the result with a 17% experimental uncertainty (for

the two highest energy points) was sufficient to single out the Standard Model descrip-

tion of the weak neutral current interaction from other alternatives. Today, one anticipates

lower-energy measurements at Jefferson Lab with experimental errors below one percent for

individual kinematic points, making for O(0.5%) combined uncertainties on quantities of

interest. The challenge for theory is to provide a framework for interpreting such precise

results.

In this study, we have attempted to do so for the leading term in the deuterium asymme-

try. In principle, it can be kinematically separated from the subleading term (suppressed by

recently in Ref. [43], though the analysis applied to the asymmetry as a whole and not the Y1 term alone.

After taking into considerations constraints from other electroweak precision observables and direct search

limits, corrections of up to 1.5% on the asymmetry are currently allowed in supersymmetric models.

Bag model estimate 
of higher twist
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by the Bag Model picture, which correlates the up- and down-quarks largely through the

confinement radius and the Pauli exclusion principle. On the other hand, the absence of

large power corrections would imply that the Y1 term can be interpreted primarily in terms

of the underlying electroweak interactions and/or possible CSV in the parton distributions.

We comment on the implications for probes of CSV and new physics in the following section.

V. CHARGE SYMMETRY VIOLATION AND NEW PHYSICS

To the extent that R1(HT) is either tiny as suggested by the MIT Bag Model estimates

or large enough to be extracted utilizing the 1/Q2-dependence, one may hope to use the

deuterium asymmetry as a probe of CSV and/or new physics. In terms of the former, it has

recently been suggested that HT contributions to the Y1 term in the deuterium asymmetry

may be too large and too theoretically uncertain to utilize this term as a probe of CSV [21].

These suggestions were based on the possibility that Rγ and RγZ could differ substantially,

a possibility we have shown cannot apply at twist four. We now compare the MIT Bag

Model estimate of R1(HT) to the CSV correction, R1(CSV). To that end, we follow the

parameterization of CSV effects utilized in Ref. [21]:

up = u+
δu

2

dp = d+
δd

2
(75)

un = d− δd

2

dn = u− δu

2
.

(76)

In terms of the δu and δd one has

R1(CSV) =

[
1

2

(
2C1u + C1d

2C1u − C1d

)
− 3

10

](
δu− δd

u+ d

)
. (77)

The δu and δd have been constrained by structure function data utilizing the ansatz

δu− δd = 2κf(x)

f(x) = x−1/2(1− x)4(x− 0.0909) , (78)

with κ lying in the range −0.8 ≤ κ ≤ +0.65. Detailed phenomenological and theoretical

analyses of CSV effects can be found in Refs.[21, 40, 41]. In Fig. 2, we show the relative

magnitudes of R1(HT) and R1(CSV) for a representative value of Q2 = 6 GeV2 and κ

given by the extremes of the allowed range. We observe that the Bag Model higher twist

correction is considerably smaller than the possible range for CSV effects. To the extent that
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by the Bag Model picture, which correlates the up- and down-quarks largely through the

confinement radius and the Pauli exclusion principle. On the other hand, the absence of

large power corrections would imply that the Y1 term can be interpreted primarily in terms

of the underlying electroweak interactions and/or possible CSV in the parton distributions.

We comment on the implications for probes of CSV and new physics in the following section.

V. CHARGE SYMMETRY VIOLATION AND NEW PHYSICS

To the extent that R1(HT) is either tiny as suggested by the MIT Bag Model estimates

or large enough to be extracted utilizing the 1/Q2-dependence, one may hope to use the

deuterium asymmetry as a probe of CSV and/or new physics. In terms of the former, it has

recently been suggested that HT contributions to the Y1 term in the deuterium asymmetry

may be too large and too theoretically uncertain to utilize this term as a probe of CSV [21].

These suggestions were based on the possibility that Rγ and RγZ could differ substantially,

a possibility we have shown cannot apply at twist four. We now compare the MIT Bag

Model estimate of R1(HT) to the CSV correction, R1(CSV). To that end, we follow the
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The δu and δd have been constrained by structure function data utilizing the ansatz

δu− δd = 2κf(x)

f(x) = x−1/2(1− x)4(x− 0.0909) , (78)

with κ lying in the range −0.8 ≤ κ ≤ +0.65. Detailed phenomenological and theoretical

analyses of CSV effects can be found in Refs.[21, 40, 41]. In Fig. 2, we show the relative

magnitudes of R1(HT) and R1(CSV) for a representative value of Q2 = 6 GeV2 and κ

given by the extremes of the allowed range. We observe that the Bag Model higher twist

correction is considerably smaller than the possible range for CSV effects. To the extent that

,



Conclusions

• PV DIS can be a powerful probe of hadronic physics beyond 
the parton model.

• The precision and wide kinematic reach of 12 GeV Upgrade at 
JLAB can in principle disentangle various hadronic effects such 
as sea quarks, CSV, and higher twist.

• PV DIS can probe a `single’ twist-4 quark-quark correlation 
matrix element and is the only known observable with this 
property.

• Uncertainties in R-gamma-Z appear to have only a small effect 
on higher twist effects.


