PV DIS Beyond Leading Twist

Sonny Mantry

Northwestern University/Argonne National Lab

In Collaboration with M.J.Ramsey-Musolf an G.F. Sacco Phys. Rev. C2 (2010) 065205, arXiv:1004.3307
"From Parity Violation to Hadronic Structure and more..."
PAVI, 20 I I, Rome, September 5th-9th

Electron-Deuteron Asymmetry

- Parity Violating asymmetry

$$
A_{R L}=\frac{\sigma_{R}-\sigma_{L}}{\sigma_{R}+\sigma_{L}}
$$

- Probe of the parity-violating Weak Neutral Current (WNC) in the Standard Model (SM).
- Led to a spectacular confirmation ofWNC theory of the SM in 1978 (SLAC).
- Gave one of the first precise measurements of the weak mixing angle to within 10\%.

Electron-Deuteron Asymmetry

- Probe of parity-violating interactions in the Standard Model.

$$
\mathcal{L}=\frac{G_{F}}{\sqrt{2}}\left[\bar{e} \gamma^{\mu} \gamma_{5} e\left(C_{1 u} \bar{\psi} \gamma_{\mu} u+C_{1 d} \overline{\gamma_{\gamma}} \bar{\mu}_{\mu}\right)+\bar{e} \gamma^{\mu} e\left(C_{2 u} \overline{\psi_{\gamma}} \gamma_{5} u+C_{2 d} d \bar{\gamma}_{\mu} \gamma_{5} d\right)\right]
$$

- Led to one of the first measurements of the weak mixing angle

$$
\begin{array}{ll}
C_{1 u}^{\mathrm{tree}}=-\frac{1}{2}+\frac{4}{3} \sin ^{2} \theta_{W}, & C_{1 d}^{\mathrm{tree}}=\frac{1}{2}-\frac{2}{3} \sin ^{2} \theta_{W} \\
C_{2 u}^{\mathrm{tree}}=-\frac{1}{2}+2 \sin ^{2} \theta_{W}, & C_{2 d}^{\mathrm{tree}}=\frac{1}{2}-2 \sin ^{2} \theta_{W}
\end{array}
$$

Electron-Deuteron Asymmetry

- All hadronic effects cancel in the asymmetry to first approximation; Cahn-Gilman (CG) formula:

$$
A_{\mathrm{CG}}^{R L}=-\frac{G_{F} Q^{2}}{2 \sqrt{2} \pi \alpha} \frac{9}{10}\left[\left(1-\frac{20}{9} \sin ^{2} \theta_{W}\right)+\left(1-4 \sin ^{2} \theta_{W}\right) \frac{1-(1-y)^{2}}{1+(1-y)^{2}}\right]
$$

All hadronic effects cancel!
Clean probe of WNC

- Hadronic effects appear as small corrections to the CG formula.

Precision Era

(J. Erler, M. Ramsey-Musolf)

- Qweak
-Weinberg angle to within 0.3%
- 12 GeV program at JLab to begin 2014:
- Moller
- SoLID, 6 GeV , and $12, \mathrm{GeV}$ experiments
- The focus has shifted from the SMWNC theory to detecting hints of physics beyond the SM.

Corrections to Cahn-Gilman

- In the precision era, all corrections to CG must be under control

$$
\begin{aligned}
& A_{R L}=-\frac{G_{F} Q^{2}}{2 \sqrt{2} \pi \alpha} \frac{9}{10}\left[\tilde{a}_{1}+\tilde{a}_{2} \frac{1-(1-y)^{2}}{1+(1-y)^{2}}\right] \\
& \tilde{a}_{j}=-\frac{2}{3}\left(2 C_{j u}-C_{j d}\right)\left[1+R_{j}(\text { new })+R_{j}(\text { sea })+R_{j}(\mathrm{CSV})+R_{j}(\mathrm{TMC})+R_{j}(\mathrm{HT})\right] \\
& \text { New physics } \\
& \text { Higher } \\
& \text { twist }
\end{aligned}
$$

- Hadronic and electroweak effects must be well understood before any claim for evidence of new physics can be made.

Asymmetry as a Probe of Hadronic Physics

$$
A_{R L}=-\frac{G_{F} Q^{2}}{2 \sqrt{2} \pi \alpha} \frac{9}{10}\left[\tilde{a}_{1}+\tilde{a}_{2} \frac{1-(1-y)^{2}}{1+(1-y)^{2}}\right]
$$

$$
\tilde{a}_{j}=-\frac{2}{3}\left(2 C_{j u}-C_{j d}\right)\left[1+R_{j}(\text { new })+R_{j}(\text { sea })+R_{j}(\mathrm{CSV})+R_{j}(\mathrm{TMC})+R_{j}(\mathrm{HT})\right]
$$

- Alternatively, precision PV DIS can be viewed as a probe of hadronic physics.
- Precision measurements over wide kinematic range can disentangle various effects.

SOLID

- SOLID plans to measure the asymmetry at the percent level over a wide kinematic range:

Projected data with errors for SOLID (K.Kumar, P. Souder)

Asymmetry as a Probe of Higher Twist

$$
\begin{gathered}
A_{R L}=-\frac{G_{F} Q^{2}}{2 \sqrt{2} \pi \alpha} \frac{9}{10}\left[\tilde{a}_{1}+\tilde{a}_{2} \frac{1-(1-y)^{2}}{1+(1-y)^{2}}\right] \\
\tilde{a}_{j}=-\frac{2}{3}\left(2 C_{j u}-C_{j d}\right)\left[1+R_{j}(\text { new })+R_{j}(\text { sea })+R_{j}(\mathrm{CSV})+R_{j}(\mathrm{TMC})+R_{j}(\mathrm{HT})\right]
\end{gathered}
$$

- Precision PV DIS can be a probe of higher twist correlations.

Asymmetry as a Probe of Higher Twist

$$
\begin{aligned}
& A_{R L}=-\frac{G_{F} Q^{2}}{2 \sqrt{2} \pi \alpha} \frac{9}{10}\left[\widehat{a}_{1}+\tilde{a}_{2} \frac{1-(1-y)^{2}}{1+(1-y)^{2}}\right] \\
& \tilde{a}_{j}=-\frac{2}{3}\left(2 C_{j u}-C_{j d}\left[1+R_{j}(\mathrm{new})+R_{j}(\mathrm{sea})+R_{j}(\mathrm{CSV})+R_{j}(\mathrm{TMC})+R_{j}(\mathrm{HT})\right]\right. \\
& \text { New physics } \text { Sea quarks }
\end{aligned}
$$

- Precision PV DIS can be a probe of higher twist correlations.
- Can probe a single four-quark matrix element which encodes quark-quark correlations. (Bjorken,Wolfenstein)

Higher Twist

Parton Model and Bjorken Scaling

- Bjorken limit: high $Q^{\wedge} 2$ at fixed Bjorken-x.

- Structure functions independent of $Q^{\wedge} 2$ up to logarithmic deviations.
- Nucleon is a collection of "almost free quarks".

Parton Model and Bjorken Scaling

- Bjorken limit: high $\mathrm{Q}^{\wedge} 2$ at fixed Bjorken-x.

- Structure functions independent of $Q^{\wedge} 2$ up to logarithmic deviations.
- Nucleon is a collection of "almost free quarks".

Operator Product expansion

Optical Theorem

- Twist expansion:

$$
i \int d^{4} x e^{i q \cdot x} J(x) J(0) \sim \sum_{n=0}^{\infty} \sum_{i, j} \frac{C_{i}^{n}\left(Q^{2}, \mu^{2}\right)}{\left(Q^{2}\right)^{\frac{\tau-2}{2}}}\left\langle\mathcal{O}_{\mu_{1} \ldots \mu_{n}}^{\tau, i}(0)\right\rangle q^{\mu_{1}} \ldots q^{\mu_{n}}
$$

- Leading twist gives the parton model.
- Correlation matrix elements beyond parton model suppressed by powers of I/Q^2: Higher Twist Terms

Operator Product Expansion

Twist-2 \longrightarrow Bjorken scaling

Quark-gluon correlation (Twist-4)

Quark-quark correlation(Twist-4)

Operator Product Expansion

Twist-2

Quark-gluon correlation (Twist-4)

Quark-quark correlation(Twist-4)

$$
\mathcal{O}_{u d}^{\mu \nu}(x)=\frac{1}{2}\left[\bar{u}(x) \gamma^{\mu} u(x) d(0) \gamma^{\nu} d(0)+(u \leftrightarrow d)\right]
$$

Key features of the Asymmetry Terms

- Asymmetry can be brought into the form:

$$
A_{R L}=-\left(\frac{G_{F} Q^{2}}{4 \sqrt{2} \pi \alpha}\right)\left[g_{A}^{e} Y_{1} \frac{F_{1}^{\gamma Z}}{F_{1}^{\gamma}}+g_{V}^{e} Y_{3} \frac{F_{3}^{\gamma Z}}{F_{1}^{\gamma}}\right]
$$

- Dominant term in asymmetry
- Can in principle be kinematically distinguished from second term (independent of y) - Can be sensitive to only quarkquark correlations
- A single twist-4 matrix element determines quark-quark correlations.
- suppressed by small electron vector coupling
- Can be kinematically distinguished from second term(dependent on y)
- Can be sensitive to quark-quark and quark-gluon correlations
- Multiple twist-4 matrix elements determine correlations
- Can be extracted from neutrino scattering data

Key features of the Asymmetry Terms

- Asymmetry can be brought into the form:

$$
\left.A_{R L}=-\left(\frac{G_{F} Q^{2}}{4 \sqrt{2} \pi \alpha}\right)\left[g_{A}^{e} Y_{1} \frac{F_{1}^{\gamma Z}}{F_{1}^{\gamma}}\right)+g_{V}^{e} Y_{3} \frac{F_{3}^{\gamma Z}}{F_{1}^{\gamma}}\right]
$$

- Dominant term in asymmetry
- Can in principle be kinematically distinguished from second term (independent of y) - Can be sensitive to only quarkquark correlations
- A single twist-4 matrix element determines quark-quark correlations.
- suppressed by small electron vector coupling
- Can be kinematically distinguished from second term(dependent on y)
- Can be sensitive to quark-quark and quark-gluon correlations
- Multiple twist-4 matrix elements determine correlations
- Can be extracted from neutrino scattering data

Some Definitions and Notation

- Asymmetry can be brought into the form:

$$
A_{R L}=-\left(\frac{G_{F} Q^{2}}{4 \sqrt{2} \pi \alpha}\right)\left[g_{A}^{e} Y_{1} \frac{F_{1}^{\gamma Z}}{F_{1}^{\gamma}}+g_{V}^{e} Y_{3} \frac{F_{3}^{\gamma Z}}{F_{1}^{\gamma}}\right]
$$

- The Y_{-}I factor has the form:

$$
Y_{1}=\left(\frac{1+R^{\gamma}}{1+R^{\gamma}}\right) \frac{1+(1-y)^{2}-y^{2}\left[1-r^{2} /\left(1+R^{\gamma}\right)\right]-2 x y M / E}{1+(1-y)^{2}-y^{2}\left[1-r^{2} /\left(1+R^{\gamma}\right)\right]-2 x y M / E}
$$

- The Y_3 factor has the form:

$$
Y_{3}=\left(\frac{r^{2}}{1+R^{\gamma}}\right) \frac{1-(1-y)^{2}}{1+(1-y)^{2}-y^{2}\left[1-r^{2} /\left(1+R^{\gamma}\right)\right]-2 x y M / E}
$$

- We have used the definitions:

$$
R^{\gamma(\gamma Z)} \equiv \frac{\sigma_{L}^{\gamma(\gamma)}}{\sigma_{T}^{\gamma(\gamma)}}=r^{2} \frac{F_{2}^{\gamma(\gamma Z)}}{2 x F_{1}^{\gamma(\gamma Z)}}-1, \quad r^{2}=1+\frac{4 M^{2} x^{2}}{Q^{2}}
$$

Cahn-Gilman Limit

- Cahn-Gilman limit:

$$
\begin{gathered}
R^{\gamma}=R^{\gamma Z}=r^{2}-1, \\
Y_{1}=1
\end{gathered}
$$

- Higher twist effects can modify these relations.

Hobbs/Melnitchouck Analysis

- Considered the possibility that higher twist effects arise entirely through the relation:

$$
R^{\gamma} \neq R^{\gamma Z}
$$

- Concluded that:
-20\% difference gives a 1% effect in asymmetry -Could interfere with extraction of CSV effects

More Recent Analysis

(SM, M.Ramsey-Musolf, G.Sacco)

- Our conclusions based on the Bjorken/Wolfenstein argument:
-Twist-4 effects in vector WNC term come only from quark-quark correlations.
-A single 4-quark twist-4 matrix element contributes to the vectorWNC term.
- The relation $R^{\gamma Z}=R^{\gamma}$ holds true at twist-4 up to perturbative corrections.

$$
A_{R L}=-\left(\frac{G_{F} Q^{2}}{4 \sqrt{2} \pi \alpha}\right)\left[g_{A}^{e} Y_{1} \frac{F_{1}^{\gamma Z}}{F_{1}^{\gamma}}+g_{V}^{e} Y_{3} \frac{F_{3}^{\gamma Z}}{F_{1}^{\gamma}}\right]
$$

Bjorken-Wolfenstein Argument

- Isospin decomposition of electromagnetic and vector neutral currents:

$$
\begin{gathered}
J_{\gamma}^{\mu}=v_{\mu}+\frac{1}{3} s_{\mu}-\frac{1}{3} \lambda_{\mu}, \quad J_{Z}^{V_{\mu}}=2\left[\left(1-2 \sin ^{2} \theta\right) v_{\mu}-\frac{2}{3} \sin ^{2} \theta s_{\mu}-\left(\frac{1}{2}-\frac{2}{3} \sin ^{2} \theta\right) \lambda_{\mu}\right] \\
v_{\mu}=\frac{1}{2}\left(\bar{u} \gamma_{\mu} u-\bar{d} \gamma_{\mu} d\right), \quad s_{\mu}=\frac{1}{2}\left(\bar{u} \gamma_{\mu} u+\bar{d} \gamma_{\mu} d\right), \quad \lambda_{\mu}=\bar{s} \gamma_{\mu} s
\end{gathered}
$$

- Isospin decomposition of electromagnetic and interference hadronic tensors

$$
\begin{gathered}
W_{\mu \nu}^{\gamma}=W_{\mu \nu}^{v v}+\frac{1}{9} W_{\mu \nu}^{s s} \\
W_{\mu \nu}^{V ; \gamma Z}=2\left(1-2 \sin ^{2} \theta\right) W_{\mu \nu}^{v v}-\frac{4}{9} \sin ^{2} \theta W_{\mu \nu}^{s s}
\end{gathered}
$$

Bjorken-Wolfenstein Argument

- Isospin decomposed hadronic tensors:

$$
\begin{aligned}
W_{\mu \nu}^{v v} & =\frac{1}{2 \pi M} \int d^{4} x e^{i q \cdot x}\langle D(P)| v_{\mu}(x) v_{\nu}(0)|D(P)\rangle \\
W_{\mu \nu}^{s s} & =\frac{1}{2 \pi M} \int d^{4} x e^{i q \cdot x}\langle D(P)| s_{\mu}(x) s_{\nu}(0)|D(P)\rangle
\end{aligned}
$$

- Twist-4 quark-quark correlation hadronic tensor:

$$
\begin{aligned}
W_{\mu \nu}^{d u} & =W_{\mu \nu}^{s s}-W_{\mu \nu}^{v v} \\
& =\frac{1}{2 \pi M} \int d^{4} x e^{i q \cdot x}\langle D(P)| \frac{1}{2}\left\{\bar{d}(x) \gamma_{\mu} d(x) \bar{u}(0) \gamma_{\nu} u(0)+(u \leftrightarrow d)\right\}|D(P)\rangle
\end{aligned}
$$

Bjorken-Wolfenstein Argument

- Isospin decomposed hadronic tensors:

$$
\begin{aligned}
W_{\mu \nu}^{v v} & =\frac{1}{2 \pi M} \int d^{4} x e^{i q \cdot x}\langle D(P)| v_{\mu}(x) v_{\nu}(0)|D(P)\rangle \\
W_{\mu \nu}^{s s} & =\frac{1}{2 \pi M} \int d^{4} x e^{i q \cdot x}\langle D(P)| s_{\mu}(x) s_{\nu}(0)|D(P)\rangle
\end{aligned}
$$

- Twist-4 quark-quark correlation hadronic tensor:

$$
\begin{aligned}
W_{\mu \nu}^{d u} & =W_{\mu \nu}^{s s}-W_{\mu \nu}^{v v} \\
& =\frac{1}{2 \pi M} \int d^{4} x e^{i q \cdot x}\langle D(P)| \frac{1}{2}\left\{\bar{d}(x) \gamma_{\mu} d(x) \bar{u}(0) \gamma_{\nu} u(0)+(u \leftrightarrow d)\right\}|D(P)\rangle
\end{aligned}
$$

- Structure Function definitions

$$
W_{\mu \nu}^{v v, s s, d u}=\left(-g_{\mu \nu}+\frac{q_{\mu} q_{\nu}}{q^{2}}\right) \frac{F_{1}^{v v, s s, d u}}{M}+\left(P_{\mu}-\frac{P \cdot q}{q^{2}} q_{\mu}\right)\left(P_{\nu}-\frac{P \cdot q}{q^{2}} q_{\nu}\right) \frac{F_{2}^{v v, s s, d u}}{M P \cdot q}
$$

Bjorken-Wolfenstein Argument

- Isospin decomposed hadronic tensors:

$$
\begin{aligned}
W_{\mu \nu}^{v v} & =\frac{1}{2 \pi M} \int d^{4} x e^{i q \cdot x}\langle D(P)| v_{\mu}(x) v_{\nu}(0)|D(P)\rangle \\
W_{\mu \nu}^{s s} & =\frac{1}{2 \pi M} \int d^{4} x e^{i q \cdot x}\langle D(P)| s_{\mu}(x) s_{\nu}(0)|D(P)\rangle
\end{aligned}
$$

- Twist-4 quark-quark correlation hadronic tensor:

$$
\begin{aligned}
W_{\mu \nu}^{d u} & =W_{\mu \nu}^{s s}-W_{\mu \nu}^{v v} \\
& =\frac{1}{2 \pi M} \int d^{4} x e^{i q \cdot x}\langle D(P)| \frac{1}{2}\left\{\bar{d}(x) \gamma_{\mu} d(x) \bar{u}(0) \gamma_{\nu} u(0)+(u \leftrightarrow d)\right\}|D(P)\rangle
\end{aligned}
$$

- Structure Function definitions

$$
\begin{gathered}
W_{\mu \nu}^{v v, s s, d u}=\left(-g_{\mu \nu}+\frac{q_{\mu} q_{\nu}}{q^{2}}\right) \frac{F_{1}^{v v, s s, d u}}{M}+\left(P_{\mu}-\frac{P \cdot q}{q^{2}} q_{\mu}\right)\left(P_{\nu}-\frac{P \cdot q}{q^{2}} q_{\nu}\right) \frac{F_{2}^{v v, s s, d u}}{M P \cdot q} \\
F_{1,2}^{v v}=F_{1,2}^{s s}-F_{1,2}^{d u}
\end{gathered}
$$

Bjorken-Wolfenstein Argument

- Original structure functions can be written as:

$$
\begin{aligned}
F_{1,2}^{\gamma} & =\frac{10}{9} F_{1,2}^{s s}-F_{1,2}^{d u} \\
F_{1,2}^{\gamma Z} & =2\left(1-\frac{20}{9} \sin ^{2} \theta\right) F_{1,2}^{s s}-2\left(1-2 \sin ^{2} \theta\right) F_{1,2}^{d u}
\end{aligned}
$$

- Asymmetry in terms of original structure functions:

$$
A_{R L}=-\left(\frac{G_{F} Q^{2}}{4 \sqrt{2} \pi \alpha}\right)\left[g_{A}^{e} Y_{1} \frac{F_{1}^{\gamma Z}}{F_{1}^{\gamma}}+g_{V}^{e} Y_{3} \frac{F_{3}^{\gamma Z}}{F_{1}^{\gamma}}\right]
$$

- YI term:

$$
A_{R L}^{V}=-\frac{9}{10}\left(\frac{G_{F} Q^{2}}{2 \sqrt{2} \pi \alpha}\right) g_{A}^{e}\left\{\left(1-\frac{20}{9} \sin ^{2} \theta\right)-\frac{1}{10} \frac{F_{1}^{d u}}{F_{1 ; L T}^{s s}}+\cdots\right\}
$$

Form of twist-4 correction

- Y I term:

$$
A_{R L}^{V}=-\frac{9}{10}\left(\frac{G_{F} Q^{2}}{2 \sqrt{2} \pi \alpha}\right) g_{A}^{e}\left\{\left(1-\frac{20}{9} \sin ^{2} \theta\right)-\frac{1}{10} \frac{F_{1}^{d u}}{F_{1 ; L T}^{s s}}+\cdots\right\}
$$

- Twist-4 correction given by:

$$
R_{1}(\mathrm{HT})=\left[\frac{-4}{5\left(1-\frac{20}{9} \sin ^{2} \theta_{W}\right)}\right] \frac{F_{1}^{d u}}{u_{p}(x)+d_{p}(x)}
$$

$$
R^{\gamma Z}=R^{\gamma}
$$

- Quark-quark correlation twist-4 operator matrix element:
twist-4 structure functions

$$
\frac{1+R^{\gamma Z}}{1+R^{\gamma}}=1+\frac{\left(F_{2}^{d u}-2 x F_{1}^{d u}\right)}{2 x F_{1 ; L T}^{s s}}\left[\frac{9}{10}-\frac{1-2 \sin ^{2} \theta}{1-\frac{20}{9} \sin ^{2} \theta}\right]
$$

twist-2 structure function

- Using the Callan-Gross relation at tree level we get:

$$
\underset{\text { (R.Ellis,W.Furmanski,R.Petronzio; X.Ji; J.Qiu) }}{F_{2}^{d u}=2 x F_{1}^{d u}} \quad \frac{1+R^{\gamma Z}}{1+R^{\gamma}}=1
$$

- We also give an effective field theory (SCET) argument (SM, M. Ramsey-Musolf, G.Sacco)

$$
R^{\gamma Z}=R^{\gamma}
$$

$$
\frac{1+R^{\gamma Z}}{1+R^{\gamma}}=1
$$

- Using the Callan-Gross relation at tree level we get:

Form of twist-4 correction

- Bag model estimate of quark-quark correlation is below the half-percent level.
- Estimates using multi-parton nucleon light-cone wave functions, found an effect twice as big. (Belitsky, Manashov, Schafer)

CSV vs Higher Twist

$$
\begin{array}{llll}
\\
\hline
\end{array}
$$

- Negligible higher twist effects can allow for a cleaner extraction of CSV or new physics effects.

Conclusions

- PV DIS can be a powerful probe of hadronic physics beyond the parton model.
- The precision and wide kinematic reach of I 2 GeV Upgrade at JLAB can in principle disentangle various hadronic effects such as sea quarks, CSV, and higher twist.
- PV DIS can probe a `single’ twist-4 quark-quark correlation matrix element and is the only known observable with this property.
- Uncertainties in R-gamma-Z appear to have only a small effect on higher twist effects.

