# Two photon exchange and beam normal spin asymmetries in the A4 experiment 

David Balaguer Rios

A4 Collaboration at Institut für Kernphysik<br>Johannes Gutenberg Universität, Mainz<br>PAVI 2011, Roma

September 9, 2011

Two photon exchange

A4 experimental setup

Extraction of the beam normal spin asymmetry at $E=315 \mathrm{MeV}$

Measurements at $\mathrm{E}=315 \mathrm{MeV}$

Extraction of the beam normal spin asymmetry at $E=420 \mathrm{MeV}$

Measurements at $\mathrm{E}=420 \mathrm{MeV}$

Summary and outlook

## Outline

## Two photon exchange

## Two photon exchange



- $R=G_{E}^{p} / G_{M}^{p}$ discrepancy $\rightarrow 2 \gamma$ exchange amplitude $\mathrm{A}_{2 \gamma}$
- Observable: Beam normal spin asymmetry BNSA
- BNSA sensitive to $\operatorname{Im}\left(\mathrm{A}_{2 \gamma}\right)$.
- Access to the intermediate states: $p, \pi^{0} p, \pi^{+} n, \Delta, \ldots$


## Outline

## A4 experimental setup

## A4 experimental concept



Rotable detector at forward and backward angles

$$
A_{\perp}=\frac{\sigma^{+}-\sigma^{-}}{\sigma^{+}+\sigma^{-}}=\frac{N^{+}-N^{-}}{N^{+}+N^{-}}
$$

$\sigma$ of (quasi)elastic scattered electrons on unpolarized nucleon

## Asymmetry dependency on azimuthal angle

$$
A_{\perp}^{m}=\frac{\sigma_{\uparrow}-\sigma_{\downarrow}}{\sigma_{\uparrow}+\sigma_{\downarrow}}=A_{\perp}(\theta) \vec{P}_{e} \cdot \vec{S}=A_{\perp} \cos \phi
$$



## Target and detectors at forward angles



- Detector covers $2 \pi$ $\phi$.
- Counts single events and measures energy.
- Target of liquid $\mathrm{H}_{2}$ and $D_{2}$.


## Detector at forward angles



## Rotated detector at backward angles



## $\mathrm{PbF}_{2}$ energy spectrum

Forwards, $\mathrm{E}=854.3 \mathrm{MeV}$


- Elastic peak clearly separated energetically separated

Backwards, E = 315.1 MeV


- Elastic peak not separated
- Background of $\gamma_{\mathrm{s}}$ and elastic peak: same energy range


## $\mathrm{PbF}_{2}$ energy spectrum

Forwards, $\mathrm{E}=854.3 \mathrm{MeV}$


- Elastic peak clearly separated
- Background of $\pi^{0} \rightarrow 2 \gamma$ energetically separated.

Backwards, E = 315.1 MeV


- Elastic peak not separated
- Background of $\gamma_{\mathrm{s}}$ and elastic peak: same energy range


## Plastic scintillators



- Plastic scintillators detect charged particles. Neutral particles not detected.

- 72 plastic scintillators: two rings of 36 with overlap.


## Target and detectors at backward angles



Extra detector at backward angles: plastic scintillators

## List of A4 measurements

| $\theta$ | $E[\mathrm{MeV}]$ | $Q^{2}\left[\mathrm{GeV}^{2}\right]$ | target | spin | process |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $30^{\circ}-40^{\circ}$ | 855 | 0.23 | $H_{2}$ | $0^{\circ}$ | PV |
| $30^{\circ}-40^{\circ}$ | 570 | 0.11 | $H_{2}$ | $0^{\circ}$ | PV |
| $30^{\circ}-40^{\circ}$ | 855 | 0.23 | $H_{2}$ | $90^{\circ}$ | $2 \gamma$ |
| $30^{\circ}-40^{\circ}$ | 570 | 0.11 | $H_{2}$ | $90^{\circ}$ | $2 \gamma$ |
| $140^{\circ}-150^{\circ}$ | 315 | 0.23 | $H_{2}$ | $0^{\circ}$ | PV |
| $140^{\circ}-150^{\circ}$ | 315 | 0.23 | $D_{2}$ | $0^{\circ}$ | PV |
| $140^{\circ}-150^{\circ}$ | 315 | 0.23 | $H_{2}$ | $90^{\circ}$ | $2 \gamma$ |
| $140^{\circ}-150^{\circ}$ | 315 | 0.23 | $D_{2}$ | $90^{\circ}$ | $2 \gamma$ |
| $140^{\circ}-150^{\circ}$ | 420 | 0.35 | $H_{2}$ | $90^{\circ}$ | $2 \gamma$ |
| $140^{\circ}-150^{\circ}$ | 420 | 0.35 | $D_{2}$ | $90^{\circ}$ | $2 \gamma$ |
| $30^{\circ}-40^{\circ}$ | 1508 | 0.62 | $H_{2}$ | $0^{\circ}$ | PV |
| $30^{\circ}-40^{\circ}$ | 420 | 0.06 | $H_{2}$ | $90^{\circ}$ | $2 \gamma$ |
| $30^{\circ}-40^{\circ}$ | 510 | 0.09 | $H_{2}$ | $90^{\circ}$ | $2 \gamma$ |
| $30^{\circ}-40^{\circ}$ | 315 | 0.03 | $H_{2}$ | $90^{\circ}$ | $2 \gamma$ |
| $30^{\circ}-40^{\circ}$ | 855 | 0.23 | $H_{2}$ | $90^{\circ}$ | $2 \gamma$ |
| $30^{\circ}-40^{\circ}$ | 1508 | 0.62 | $H_{2}$ | $90^{\circ}$ | $2 \gamma$ |
| $140^{\circ}-150^{\circ}$ | 200 | 0.10 | $H_{2}$ | $0^{\circ}$ | $P V$ |
| $140^{\circ}-150^{\circ}$ | 200 | 0.10 | $H_{2}$ | $90^{\circ}$ | $2 \gamma$ |

## Outline

Extraction of the beam normal spin asymmetry at $\mathrm{E}=315 \mathrm{MeV}$

## Energy spectra for $\mathrm{I}-\mathrm{H}_{2}$ target



- Two histograms: charged particles and neutral particles
- Separation of the elastic peak in the charged particles spectrum


## Background in the charged particles spectrum

- $\pi^{0} \rightarrow 2 \gamma$ and $\gamma \rightarrow e^{+}+e^{-}$in materials before calorimeter

- $\gamma$ background in the spectrum of charged particles
- Scattering on aluminium windows


## Energy spectra for $\mathrm{I}-\mathrm{H}_{2}$ target



- Separation of the elastic peak in the charged particles spectrum
- Still neutral background from $\gamma \rightarrow e^{-} e^{+}$


## Understanding the energy spectrum



- Monte Carlo Geant4 simulation: $e^{-}$processes and $\gamma_{\mathrm{s}}$
- Background from Al walls: measurement with empty target
- Agreement above 125 MeV


## Background obtained from neutral spectrum



- $\gamma$ background $\mathrm{A}_{\perp}$ ?
- From experimental spectrum of neutral particles
- Method to obtain $\gamma$ background
- Parameters
- shift $\delta$ : energy loss of electrons
- scaling factor $\epsilon$ : probability of $\gamma$ conversion


## Energy spectrum with $\mathrm{H}_{2}$

## target $\mathrm{H}_{2}, \mathrm{E}=315 \mathrm{MeV}, \mathrm{Q}^{2}=0.23(\mathrm{Gev} / \mathrm{c})^{2}, \theta=145^{\circ}$



Elastic scattered electrons and background from $\gamma \rightarrow e^{+} e^{-}$
$A_{\perp}=\frac{A_{c}-f \cdot A_{\gamma}}{1-f}$
, dilution factor $f=\frac{N_{\gamma}}{N_{c}}$

## Energy spectrum with $\mathrm{D}_{2}$

$$
\text { target } \mathrm{D}_{2}, \mathrm{E}=315 \mathrm{MeV}, \mathrm{Q}^{2}=0.23(\mathrm{Gev} / \mathrm{c})^{2}, \theta=145^{\circ}
$$



Quasi-elastic scattered electrons and background from $\gamma \rightarrow e^{+} e^{-}$
Static approximation $A_{\perp}^{d}=\frac{\sigma_{p} A_{\perp}^{p}+\sigma_{n} A_{\perp}^{n}}{\sigma_{p}+\sigma_{n}}$

## BNSA of the elastic events on $\mathrm{H}_{2}$


target $\mathrm{H}_{2}, \mathrm{E}=315 \mathrm{MeV}, \mathrm{Q}^{2}=0.23(\mathrm{Gev} / \mathrm{c})^{2}, \theta=145^{\circ}$
$A_{\perp}=A_{0} \cos (\phi+\delta)+p$

$$
\chi^{2} / \nu=0.94
$$

$$
P=0.68
$$

$$
A_{\perp}=(-91.58 \pm 4.28)
$$

$$
\mathrm{ppm}
$$

$$
\alpha=(5.62 \pm 3.81)^{\circ}
$$

$$
p=(6.76 \pm 4.25) \mathrm{ppm}
$$

Dependence on the azimuthal angle

## BNSA of the background

$$
\begin{aligned}
& \text { target } \mathrm{H}_{2}, \mathrm{E}=315 \mathrm{MeV}, \mathrm{Q}^{2}=0.23(\mathrm{Gev} / \mathrm{c})^{2}, \theta=145^{\circ} \\
& A_{\perp}=A_{0} \cos (\phi+\delta)+p
\end{aligned}
$$



$$
\begin{aligned}
& \chi^{2} / \nu=1.01 \\
& P=0.47 \\
& \mathrm{~A}=(-90.48 \pm 3.98) \mathrm{ppm} \\
& \alpha=-2.60 \pm 3.10 \\
& p=(-1.50 \pm 2.97) \mathrm{ppm}
\end{aligned}
$$

Dependence on the azimuthal angle

## BNSA of the quasielastic events on $D_{2}$

$$
\begin{aligned}
& \text { target } \mathrm{D}_{2}, \mathrm{E}=315 \mathrm{MeV}, \mathrm{Q}^{2}=0.23(\mathrm{Gev} / \mathrm{c})^{2}, \theta=145^{\circ} \\
& A_{\perp}=A_{0} \cos (\phi+\delta)+p
\end{aligned}
$$



Dependence on the azimuthal angle

## BNSA of the background

$$
\begin{aligned}
& \text { target } \mathrm{D}_{2}, \mathrm{E}=315 \mathrm{MeV}, \mathrm{Q}^{2}=0.23(\mathrm{Gev} / \mathrm{c})^{2}, \theta=145^{\circ} \\
& A_{\perp}=A_{0} \cos (\phi+\delta)+p \\
& \chi^{2} / \nu=1.01 \\
& P=0.47 \\
& \mathrm{~A}=(-54.06 \pm 2.82) \mathrm{ppm} \\
& \alpha=(-2.60 \pm 3.10)^{\circ} \\
& p=(-1.50 \pm 2.97) \mathrm{ppm}
\end{aligned}
$$

Dependence on the azimuthal angle

## Extracted BNSA

target $\mathrm{H}_{2}, \mathrm{E}=315 \mathrm{MeV}, \mathrm{Q}^{2}=0.23(\mathrm{Gev} / \mathrm{c})^{2}, \theta=145^{\circ}$

A (ppm)


Dependence on the lower cut ( $=\mu-k \cdot \sigma$ ) BNSA of background depends strongly on energy


## Extracted BNSA

## target $\mathrm{D}_{2}, \mathrm{E}=315 \mathrm{MeV}, \mathrm{Q}^{2}=0.23(\mathrm{Gev} / \mathrm{c})^{2}, \theta=145^{\circ}$



Dependence on the lower cut ( $=\mu-k \cdot \sigma$ ) BNSA of background depends strongly on energy


## Extracted BNSA

target $\mathrm{D}_{2}, \mathrm{E}=315 \mathrm{MeV}, \mathrm{Q}^{2}=0.23(\mathrm{Gev} / \mathrm{c})^{2}, \theta=145^{\circ}$


Dependence on the lower cut BNSA of background depends strongly on energy

## Data analysis plan

- Asymmetry is extracted for every module and every run.

$$
\mathrm{A}_{\perp}=\frac{\mathrm{A}_{c}-f \mathrm{~A}_{\gamma}}{1-f}
$$

- Average of asymmetries over all runs for each frame (azimuthal angle)
- Correction of systematics and evaluation of systematic errors
- Normalization to the electron beam polarization $A_{\text {phys }}=\frac{A_{\text {exp }}}{P_{e}}$


## Outline

Measurements at $\mathrm{E}=315 \mathrm{MeV}$

## statistics

## target $\mathrm{H}_{2}, \mathrm{E}=315 \mathrm{MeV}, \mathrm{Q}^{2}=0.23(\mathrm{Gev} / \mathrm{c})^{2}, \theta=145^{\circ}$

- Low cut $\mathrm{k}=1.5 \sigma$, dilution factor $\mathrm{f}=8 \%$
- 5 inner rings of the calorimeter: 730 crystals
- 50 hours of data taking
- Altogether $10^{11}$ elastic events
- Effective $P_{e}=77.0 \%$, error $\Delta\left(P_{e}\right)=4 \%$
- Statistical error: $\sigma(A)=\frac{1}{P_{e} \sqrt{N_{e l}}} \Rightarrow \sigma(A)=4.13 \mathrm{ppm}$


## Systematics and measurement

$$
\text { target } \mathrm{H}_{2}, \mathrm{E}=315 \mathrm{MeV}, \mathrm{Q}^{2}=0.23(\mathrm{Gev} / \mathrm{c})^{2}, \theta=145^{\circ}
$$

|  | Scaling factor | Error(ppm) |
| :--- | ---: | ---: |
| Polarization | 0.77 | 3.29 |
|  | Correction(ppm) | Error(ppm) |
| Dilution of $\gamma$ backgr. | -1.10 | 1.16 |
| $\epsilon, \delta$ parameters | - | 2.90 |
| Helicity corr. beam diff. | -0.12 | 0.70 |
| Non-helicity corr. beam fluc. | - | 1.03 |
| Al windows | -1.93 | 0.10 |
| Random coinc. events | -1.25 | 0.07 |
| Luminosity | -0.61 | 0.20 |
| Nonlinearity of $L$ | -0.47 | 0.17 |
| spin angle deviation | -0.65 | 0.89 |
| Sum syst. errors | 4.79 |  |

$$
A_{\perp}=(-96.61 \pm 4.13 \pm 4.79) \mathrm{ppm}
$$

## Model calculation of the BNSA for proton

$$
\text { target } \mathrm{H}_{2}, \mathrm{E}=315 \mathrm{MeV}, \mathrm{Q}^{2}=0.23(\mathrm{Gev} / \mathrm{c})^{2}, \theta=145^{\circ}
$$



Inelastic intermediate states contribution to BNSA is dominant


## statistics

## target $\mathrm{D}_{2}, \mathrm{E}=315 \mathrm{MeV}, \mathrm{Q}^{2}=0.23(\mathrm{Gev} / \mathrm{c})^{2}, \theta=145^{\circ}$

- Low cut $\mathrm{k}=1.0 \sigma$, dilution factor $\mathrm{f}=13 \%$
- 5 inner rings of the calorimeter: 730 crystals
- 60 hours of data taking
- Altogether $1.7 \cdot 10^{11}$ elastic events
- Effective $P_{e}=79.0 \%$, error $\Delta\left(P_{e}\right)=4 \%$
- Statistical error: $\sigma(A)=\frac{1}{P_{e} \sqrt{N_{e l}}} \Rightarrow \sigma(A)=3.04 \mathrm{ppm}$


## Systematics and measurement

## target $\mathrm{D}_{2}, \mathrm{E}=315 \mathrm{MeV}, \mathrm{Q}^{2}=0.23(\mathrm{Gev} / \mathrm{c})^{2}, \theta=145^{\circ}$

|  | Scaling factor | Error(ppm) |
| :--- | ---: | ---: |
| Polarization | 0.79 | 2.23 |
|  | Correction(ppm) | Error(ppm) |
| Dilution of $\gamma$ backgr. | 2.73 | 1.28 |
| $\epsilon, \delta$ parameters | - | 0.97 |
| Helicity corr. beam diff. | -0.40 | 0.32 |
| Non-helicity corr. bean fluc. | - | 1.14 |
| Al windows | 0.50 | 0.05 |
| Random coinc. events | -1.55 | 0.10 |
| Luminosity | -0.97 | 0.41 |
| Nonlinearity of $L$ | -0.82 | 0.25 |
| spin angle deviation | -0.90 | 1.30 |
| Sum syst. errors |  | 3.29 |

$$
A_{\perp}=(-55.46 \pm 3.04 \pm 3.29) \mathrm{ppm}
$$

## Model calculation of the BNSA for neutron

## target $\mathrm{D}_{2}, \mathrm{E}=315 \mathrm{MeV}, \mathrm{Q}^{2}=0.23(\mathrm{Gev} / \mathrm{c})^{2}, \theta=145^{\circ}$



Barbara Pasquini et al. Phys. Rev. C 70, 045206 (2004)

## Outline

Extraction of the beam normal spin asymmetry at $\mathrm{E}=420 \mathrm{MeV}$

## Energy spectrum with $\mathrm{H}_{2}$

target $\mathrm{H}_{2}, \mathrm{E}=420 \mathrm{MeV}, \mathrm{Q}^{2}=0.35(\mathrm{Gev} / \mathrm{c})^{2}, \theta=145^{\circ}$
$A_{\perp}=A_{0} \cos (\phi+\delta)+p$


Elastic scattered electrons and background
$A_{\perp}=\frac{A_{c}-f \cdot A_{\gamma}}{1-f}$
, dilution factor $f=\frac{N_{\gamma}}{N_{c}}$

## Energy spectrum with $\mathrm{D}_{2}$

## target $\mathrm{D}_{2}, \mathrm{E}=420 \mathrm{MeV}, \mathrm{Q}^{2}=0.35(\mathrm{Gev} / \mathrm{c})^{2}, \theta=145^{\circ}$



Quasielastic scattered electrons and background
Static approximation $A_{\perp}^{d}=\frac{\sigma_{p} A_{\perp}^{p}+\sigma_{n} A_{\perp}^{n}}{\sigma_{p}+\sigma_{n}}$

## BNSA of the elastic events on $\mathrm{H}_{2}$

## target $\mathrm{H}_{2}, \mathrm{E}=420 \mathrm{MeV}, \mathrm{Q}^{2}=0.35(\mathrm{Gev} / \mathrm{c})^{2}, \theta=145^{\circ}$



$$
\begin{aligned}
& \chi^{2} / \nu=1.12 \\
& P=0.14 \\
& \mathrm{~A}_{\perp}=(-93.97 \pm 7.30) \\
& \mathrm{ppm} \\
& \alpha=(2.66 \pm 4.44)^{\circ} \\
& p=(-7.34 \pm 5.17) \mathrm{ppm}
\end{aligned}
$$

Dependence on the azimuthal angle

BNSA of the elastic events on $\mathrm{H}_{2}$

## target $\mathrm{D}_{2}, \mathrm{E}=420 \mathrm{MeV}, \mathrm{Q}^{2}=0.35(\mathrm{Gev} / \mathrm{c})^{2}, \theta=145^{\circ}$



$$
\begin{aligned}
& \chi^{2} / \nu=1.12 \\
& P=0.14 \\
& \mathrm{~A}_{\perp}=(-49.93 \pm 5.27) \\
& \mathrm{ppm} \\
& \alpha=(7.39 \pm 6.05)^{\circ} \\
& p=(-4.33 \pm 3.73) \mathrm{ppm}
\end{aligned}
$$

Dependence on the azimuthal angle

## Outline

Measurements at $\mathrm{E}=420 \mathrm{MeV}$

## statistics

## target $\mathrm{H}_{2}, \mathrm{E}=420 \mathrm{MeV}, \mathrm{Q}^{2}=0.35(\mathrm{Gev} / \mathrm{c})^{2}, \theta=145^{\circ}$

- Low cut $\mathrm{k}=1.5 \sigma$, dilution factor $\mathrm{f}=15 \%$
- 5 inner rings of the calorimeter: 730 crystals
- 85 hours of data taking
- Altogether $8.2 \cdot 10^{10}$ elastic events
- Effective $P_{e}=74 \%$, error $\Delta\left(P_{e}\right)=4 \%$
- Statistical error: $\sigma(A)=\frac{1}{P_{e} \sqrt{N_{e l}}} \Rightarrow \sigma(A)=4.73 \mathrm{ppm}$


## Systematics and measurement

$$
\text { target } \mathrm{H}_{2}, \mathrm{E}=315 \mathrm{MeV}, \mathrm{Q}^{2}=0.23(\mathrm{Gev} / \mathrm{c})^{2}, \theta=145^{\circ}
$$

|  | Scaling factor | Error(ppm) |
| :--- | ---: | ---: |
| Polarization | 0.74 | 4.19 |
|  | Correction(ppm) | Error(ppm) |
| Dilution of $\gamma$ backgr. | -1.37 | 2.09 |
| $\epsilon, \delta$ parameters | - | -0 |
| Helicity corr. beam diff. | 0.10 | 0.92 |
| Non-helicity corr. beam fluc. | - | 1.62 |
| Al windows | -4.79 | 0.24 |
| Random coinc. events | 3.63 | 0.19 |
| Luminosity | -1.59 | 0.52 |
| Nonlinearity of $L$ | -1.30 | 0.64 |
| spin angle deviation | - | - |
| Sum syst. errors | 5.11 |  |

$$
A_{\perp}=(-97.42 \pm 4.73 \pm 5.11) \mathrm{ppm}
$$

## Model calculation of the BNSA for proton

$$
\text { target } \mathrm{H}_{2}, \mathrm{E}=420 \mathrm{MeV}, \mathrm{Q}^{2}=0.35(\mathrm{Gev} / \mathrm{c})^{2}, \theta=145^{\circ}
$$



Inelastic intermediate states contribution to BNSA is dominant

Barbara Pasquini et al. Phys. Rev. C 70, 045206 (2004)


## statistics

$$
\text { target } \mathrm{D}_{2}, \mathrm{E}=420 \mathrm{MeV}, \mathrm{Q}^{2}=0.35(\mathrm{Gev} / \mathrm{c})^{2}, \theta=145^{\circ}
$$

- Low cut $\mathrm{k}=1.0 \sigma$, dilution factor $\mathrm{f}=16 \%$
- 5 inner rings of the calorimeter: 730 crystals
- 83 hours of data taking
- Altogether $6.2 \cdot 10^{10}$ elastic events
- Effective $P_{e}=85 \%$, error $\Delta\left(P_{e}\right)=4 \%$
- Statistical error: $\sigma(A)=\frac{1}{P_{e} \sqrt{N_{e l}}} \Rightarrow \sigma(A)=4.73 \mathrm{ppm}$

$$
A_{\perp}=(-49.97 \pm 4.20 \pm 2.18) \mathrm{ppm}
$$

## Model calculation of the BNSA for neutron

target $\mathrm{D}_{2}, \mathrm{E}=315 \mathrm{MeV}, \mathrm{Q}^{2}=0.23(\mathrm{Gev} / \mathrm{c})^{2}, \theta=145^{\circ}$


$$
A_{\perp}^{d}=\frac{\sigma_{p} A_{\perp}^{p}+\sigma_{n} A_{\perp}^{n}}{\sigma_{p}+\sigma_{n}} \Rightarrow A_{\perp}^{n}=(54.94 \pm 22.11) \cdot 10^{-6}
$$

Barbara Pasquini et al. Phys. Rev. C 70, 045206 (2004)

## Outline

## Summary and outlook

## Summary and outlook

- Measurement of the beam normal spin asymmetry with $\mathrm{H}_{2}$ and $\mathrm{D}_{2}$ at $Q^{2}=0.23(\mathrm{GeV} / \mathrm{c})^{2}$
- Preliminary analysis of the beam normal spin asymmetry with $\mathrm{H}_{2}$ and $\mathrm{D}_{2}$ at $Q^{2}=0.35(\mathrm{GeV} / \mathrm{c})^{2}$
- Comparison of the measurements with the model calculation of the BNSA
- Analysis of the new data with beam normal spin polarization at forward angles
- New measurement of the BNSA at backward angles with 200 MeV and $Q^{2}=0.10(\mathrm{GeV} / \mathrm{c})^{2}$

