The Polarimeter chain for the MESA-PV experiment

> PAVI2011, ROME 08.09.2011 Kurt Aulenbacher for the B1,B2 and A4 collaborations at IKP Mainz

Outline

- The MESA-PV experiment at Mainz
- and the eight-fold way to achieve $\Delta P/P < 0.5\%$?

Planned sin²(θ_w)- Measurement at the MESA facility in Mainz

MESA Accuracy goal: $\Delta A_{PV}/A_{PV}=1.6\%$ one (out of many) requirements $\rightarrow \Delta P/P \sim 0.5\%$

"Unimpeachable" polarization measurement: two independent polarimeters with $\Delta P/P < 0.5\%$ each. Machine could be in operation in 2017 \rightarrow start polarimeter tests NOW!

Electron-Polarimeter chain at MAMI

Existing Electron-Polarimeter chain at MAMI

Polarimeter	∆P/P present (Potential)	Main uncertainty	Measurement Time @1% stat	Operating current	Energy range [MeV]
Mott	0.05 (0.01)	Background	3s-1h	5nA - 40μA	1-4
Möller	0.02 (0.01)	Target pol.	30min	50nA	300-1500
LCP	0.02 (0.01)	Calibration, Target pol.	12 h	20μA	850-1500

Mott is not (yet) competitive in absolute accuracy but provides 'linking' capabilities due to wide dynamic range and good reproducibility

Some remarks

- low energy restriction of Mott scattering probably no cause for additional systematics at MESA
 - $(\rightarrow$ exact spin tracking possible, no resonances)
- LCP not possible at MESA due to small energy, Hydro-Möller could work
- Different concepts (,paradigms') of measurements:
 - Hydro Möller ,double-polarization'
 - Mott ,double scattering'

Hydro-Möller

Chudakov&Luppov, Proceedings IEEE Trans. Nucl. Sc. **51**, 1533 (2004) → see talk by E. Chudakov...

Solenoid traps pure H[↑] which has a long lifetime due to He-coating of storage cell. All other species are removed quickly from the trap. \rightarrow 1- ϵ Polarization can be reasonably well estimated, but measurement difficult.

Some remarks

- Beam/solenoid adjustment critical, due to high field and low energy→ consequences for PV-detector calibration (,dithering'), etc
- Scattered electrons may perform several cyclotron oscillations in solenoid field → Detector acceptance determination?
- The Hydro-Möller follows a ,paradigma':

"accurate determination of effective analyzing power is achieved by factorization of theoretical and experimental effects"

$$A_{exp} = P_{beam} \underbrace{CorrP_T S_0}_{S_{eff}}$$
 Corr = i.e dilution by background

A different aproach

How to avoid the systematic errors caused by individual factors? Apparent attractiveness of standard (singe-) Mott-scattering:

$$A_{\exp} = P_{beam} \underbrace{CorrS^{y}}_{S_{eff}} \implies \operatorname{No} P_{T} !$$

(but no change of Paradigma)

In **double** elastic scattering S_{eff} can be **measured**! (...another paradigma...)

After scattering of unpolarize d beam :

$$P_{sc} = S_{eff}$$

(Equality of polarizing and Analyzing Power :) After second "identical" scattering process

$$A_{\rm exp} = S^2_{eff}$$

with great effort to elliminate

apparative asymmetries and to provide 'identical' scattering)

the claimed accuracy in S_{eff} is < 0.3%!

08.09.2011

A. Gellrich and J.Kessler 10 PRA 43 204 (1991)

Some remarks

- DSP works at ~100keV; ideal for ,1mA-MESA-stage-1
- Original Kessler apparatus available
- Targets **not** extremely thin (~100nm)
- Elimination of apparatus asymmetry depends critically on geometrical arrangement of normalization counters
- Apparatus calibrates S_{eff} , but does not allow to measure S_{n}
- Inelastic contributions do not jeopardize the accuracy! •
- potential issues
 - \rightarrow how to use with polarized beam?
 - \rightarrow What if the two targets are NOT identical?

Hopster&Abraham (1989):

In this case the first target may be treated as an auxiliary target and the availability of (switchable) Polarization may be exploited for even better accuracy! 11

Kessler/HopsterAbraham/Kessler Method

1.) measurement : Pol beam on second target

 $A_1 = S_{eff} P_0$

2.) with 'auxiliary target': S_T ; + P_0

$$A_2 = P_T S_{eff} = \frac{S_T + \alpha P_0}{1 + S_T P_0} S_{eff}$$

 α = Depolarization factor for first Target 3.with 'auxiliary target': S_T; - P₀

$$A_{3} = P_{T} S_{eff} = \frac{S_{T} - \alpha P_{0}}{1 - S_{T} P_{0}} S_{eff}$$

4. unpolarized beam on aux. target

 $A_4 = S_T S_{eff}$

5. Scattering asymmetry from auxiliary target

 $A_5 = P_0 S_T$

5 equations with four unknowns→ consistency check for apparative asymmetries!

 \rightarrow Results achieved by Kessler were consistent <0.3% $_{08.09.2011}$

S. Mayer et al Rev. Sci. Instrum. 64 952 (1993) 12

Some remarks

- Auxiliary target method was limited by statistical efficiency (today about 5 times better!)
- DSP invasive, but fast.
- Probably not feasible to operate DSP at > 100µA current level, requires ,linking Polarimeter'
- Linking with high precision polarimeters to be installed at 5MeV (Mott/Compton-combination
- Mott/Compton combination invasive but extremely fast (O(seconds) <1% stat. accuracy), also control of spin angle
- In total eight measurements: 5 DSP, 2 linking, 1 Hydro Möller, → ,the eight-fold way'

Linking capabilities

Dynamic Range:

08.09.2011

Stability:

R. Barday et al. 2011 J. Phys. Conf. Ser. 298 012022

Polarization Drift consistently observed in transverse AND longitudinal observable at the <0.5% level (Measurement at 3.5 MeV, 35 μ A) Compton is an analogue, Mott a counting measurement

Conclusion:

MESA Spin chain

- low and a high energy polarimeter cross-check: negl. depolarization due to low energy gain of MESA
- Monitoring, stability and cross calibration can be supported by extremely precise Mott/Compton combination.
- Hydro Möller + DSP may obtain △P/P <0.5 % each,

Status of MESA

- MESA accelerator & experiments are under design,
- Funding decision within next year.
- MESA-PV data taking possible in 2017/18 (10000h BOT).

Conclusion

- MESA operates in EB-mode for PV and in ERL-mode for Dark Photon experiment.
- Main cost factor building eliminated, other one –SRFreduced by multi-turn recirculation.
- PV requires extreme beam parameter stability
- ...and accurate polarization measurement by a polarimeter chain
- In ERL mode, the new issue is multi-turn recirculation
- no doubt that this project provides room for students and young researches!

"Unimpeachable" polarization measurement: two independent polarimeters with $\Delta P/P < 0.5\%$ (NOT: 1%) each.

08.09.2011

H. Merkel et al. (A1 collab. at MAMI): suggest to measure e+/e- pair invariant mass with double spectrometer set up at MAMI.

MESA: Dedicated machine for m_{A²} <100MeV with optimized background

MESA-experiments-3: Applied physics

High beam power electron beam may be used for:

- ERL-mode: Production of nanodiamonds (see talk by F. Jelezko this afternoon)
- EB-mode: High brightness source of cold (polarized) positrons

Color: NV-centers introduced in Diamond. Irradiated at MAMI for 3 days, 50μ A at 14MeV (J. Tisler et al. ACS NANO 3,7 p.1959 (2009))

08.09.2011

MESA accelerator project rationale and beam parameter goals

• Experiments require a new & innovative accelerator

-but energy is low, therefore accelerator 'affordable'
- MAMI acc. team competence represents basis for development
- Project will be attractive for young students and researchers

Make use of innovations in SRF accelerator science:

1. Energy recovery linac (ERL)

2. Improvements on high gradient-c.w.-SRF

Beam parameter goals in two **different** modes of operation:

1.) EB-mode External spin-polarized c.w. beam (EB-mode) at 137 MeV (Q²=0.005GeV/c at 30 degree). L>10³⁹ cm⁻²s⁻¹

2.) ERL-mode: 10mA at 100 MeV with L~10³⁵ cm⁻²s⁻¹

MESA-Layout

KEY:

- PS: Photosource (polarized or unpolarized beam)
- IN: 2.5 MeV injector
- SC: 3 Superconducting cavities, @ 13 MV/m. Energy gain 34 MeV per pass.
- RC: Beam recirculation 3 times
- HW: Third recirculation option 'half wave':
 - Energy Recovery Linac (ERL-) Mode
- FW: Third recirculation option: 'full wave' External Beam (EB-) mode
- PIT: Pseudo Internal target (ERL mode)
- PV: Parity violation experiment (EB-mode)
- DU: 2.5 MeV beam dump in ERL-mode
- EX: Experimental areas 1 and 2

Existing walls: 2-3m thick shielding

EXPERIMENTAL BEAM PARAMETERS: 1.3 GHz c.w.

EB-mode: 150 μA, 137 MeV polarized beam (liquid Hydrogen target L~10³⁹) ERL-mode: 10mA, 104 MeV unpolarized beam

(Pseudo-Internal Hydrogen Gas target, L~1035)

Project/Purpose (status)	Av. Beam current (mA)	# of Recirc.	Norm. emit. (μm)	Bunch charge (pC)
MESA/ particle physics (under design)	10	3	10	7.7
JLAB/ light source (achieved)	10	1	7	7.7
BERLinPro/light source demonstrator (under design, funded)	100	1	1	77
eRHIC/particle physics (under design)	50	6		

- MESA will **not** have to provide extreme bunch parameters
- New issue: multi-turn recirculation (two or three times?)→ MESA may be useful as a test-bench for LHeC, eRhic, or others....
- The challenge is compliance between ERL and EB operation
 → see talk tomorrow!
 - \rightarrow Discuss now: specific issues for DM and PV

DM: Focusing through the PIT

$$\varepsilon_{\text{Norm}} = 10 \,\mu m \,(\text{or } 3.2 \,\pi \,\text{mm} * \text{mrad} * \text{m}_{e}\text{c}) \quad (\text{MESA goal})$$

$$\varepsilon_{\alpha} = \frac{\varepsilon_{\text{Norm}}}{\varepsilon_{\alpha}} \implies \varepsilon_{\alpha} \quad (100 \,\text{MeV}) \sim 50 \,\text{nm}.$$

$$\varepsilon_{\text{Geo}} = \frac{1}{\sqrt{\gamma^2 - 1}} \implies \varepsilon_{\text{Geo}} (100 \text{MeV}) \sim 50 \text{nm.}$$

Beam diameter as a function of optical function β :

$$r_{_{\text{beam}}}^2(z) = \varepsilon_{_{Geo}} * \beta(z)$$

in the field free region around symmetry point $z^* = 0$

$$\beta(z) = \beta(z^*) + \frac{z^2}{\beta(z^*)} = \beta^* (1 + (z/\beta^*)^2) \text{ choose : } \beta^* = 1m$$

 \Rightarrow Maximum beam diameter ≤ 0.62 mm over 2 Meters of length

DM: Focusing through the PIT

- Assuming target density N=2*10¹⁸ atoms/cm⁻² (3.2 μ g/cm², 5*10⁻⁸ X₀) we have (at I₀=10⁻² A) luminosity of L= I₀/e*N=1.2*10³⁵cm⁻²s⁻¹ \rightarrow (average) ionization Energy loss: ~ 17eV
- \rightarrow could allow to recuperate more energy than in conventional ERL (2.5MeV).
- \rightarrow RMS scattering-angle (multiple Coulomb scattering): 10µrad
- → single pass beam deterioration is acceptable Note: storage ring: beam emittance lifetime ~ 10milliseconds (stationary vs. variable background...)
- ightarrow beam halo & long tails of distribution due to Coulomb scattering have to be studied

PV is a simple experiment

 $k(\gamma Z)$ is not very well known \Rightarrow see talks on PV

Penalty for choosing low Q²: A_{PV} becomes very small (roughly 50 ppb)

- → Even at L>10³⁹ the experiment will need about 10000 hours BOT: Experiment cannot be done at MAMI without strong interference with ongoing program.
- → A_{False} must be controlled to <0.4 ppb: Improve established techniques from PVA4 by about an order of magnitude (see accelerator talk tomorrow)</p>
- → $\Delta A_{PV}/A_{PV} = 1\%$ → $\Delta P/P < 0.7\%$, better <0.5%. (MAINZ05-project)

Beam polarimetry is a simple experiment

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{0.\,proc} \cdot \left(1 + \sum_{i=x,y,z} S_i(\vartheta) \cdot P_i^{Beam} + \sum_{i,j=x,y,z} S_{i,j}(\vartheta) \cdot P_i^{Beam} P_j^T\right)$$
Process examples : Elastic Electron (Mott-)scattering : S_y
Möller - or Compton - Backscattering : S_{zz}
A_{Mott} = P_y^{BEAM} S_y(\vartheta, E...) ; A_{Möller} = P_z^{BEAM} P_z^{Target} S_{zz}(\vartheta, E...) to be determined.

Ideal polarimeter would have simultaneously:

1.) Online operation at experimental beam conditions,

2.)∆P/P <0.5%,

3.) fast polarization monitoring.

Probably the best approach: The "Hydro-Möller"-Polarimeter

- Online operation possible
- low Levchuk effect (Z=1 vs Z=26 conventional)
- very high P_TS_{zz}→ good efficiency in spite of low count rate statistics to 0.5% within about 30min
- $P^{Target}=1-\epsilon \rightarrow small Target polarization error (\epsilon \sim 10^{-5})$
- •Problem: Not realized yet→how does it work?