Upgraded photon calorimeter with integrating readout for the Hall A Compton Polarimeter at Jefferson Lab

> Megan Friend HAPPEX Collaboration

Carnegie Mellon University

September 7, 2011

1 Compton Polarimetry Introduction

2 Hall A Compton Polarimeter Upgrade

3 HAPPEX-III BEAM POLARIZATIONS

4 CONCLUSION

MOTIVATION

- New parity violation experiments require a better than 1% absolute measurement of the electron beam polarization
 - HAPPEX-III measured a parity violating asymmetry with 1.5% overall systematic error required 1% polarimetry
- $\bullet\,$ Compton asymmetry is 1% requires a precision of 1×10^{-4}
- Upgrades to existing Hall A equipment were necessary

COMPTON POLARIMETRY

• Longitudinally polarized electron beam scatters off circularly polarized IR laser light

• Different scattering cross section depending on relative polarizations

COMPTON POLARIMETRY

• The measured experimental asymmetry (for one laser polarization) is:

$$A_{exp}=\frac{S^+-S^-}{S^++S^-}$$

• The measured Compton asymmetry gives the electron beam polarization:

$$A_{exp} = A_{th}P_{elect}P_{phot} \qquad \Rightarrow \qquad P_{elect} = \frac{A_{exp}}{P_{phot}A_{th}}$$

JEFFERSON LAB HALL A COMPTON POLARIMETER

- Detection of scattered photons in photon detector
- Detection of scattered electrons in electron detector
- Only 1 electron in 10⁹ scatters non-invasive

ENERGY WEIGHTED COMPTON MEASUREMENT

- The Compton analyzing power is small and negative at low energies and large and positive at high energies
- Thus an energy weighted measurement is useful integrating mode
- Upgraded Compton DAQ (FADC DAQ) integrates the detected signal
- Adding a threshold could increase measured asymmetry, but also increases systematic error

Counting vs Integrating Mode

Counting Mode

- Count all pulses which cross some threshold
- Not energy weighted measures a smaller asymmetry
- Has threshold
- Sensitive to dead-time and pileup
- Less sensitive to non-linearities/gain shifts
- Works well at low photon rate
- \circ $\sim 3\%$ systematic error

Integrating Mode

- Integrate all PMT output within a 33 ms time window
- Energy weighted measures a larger asymmetry
- No threshold
- Insensitive to dead-time and pileup
- More sensitive to non-linearities/gain shifts
- Noise at low photon rate
- 1% systematic error

POLARIMETER UPGRADE

- New photon calorimeter: 15cm long, 6cm diameter GSO crystal
 - Ce-doped Gd₂SiO₅
 - $\bullet~{\sim}150$ photo-electrons per MeV
 - "Linear" PMT and base
 - LED pulser built to measure linearity
- New integrating photon DAQ
 - Customized SIS3320 FADC
 - Two simultaneous modes: Accumulator (integrating) and Triggered
 - Integrating mode allows for stand-alone photon measurement
- New electron microstrip detector (can be used for calibration)
- Upgraded to green laser (used IR laser for HAPPEX-III measurement)

EXPERIMENTAL ASYMMETRY

$$P_{elect} = \frac{A_{exp}}{P_{phot}A_{th}}$$

$$A_{exp} = \frac{S^+ - S^-}{S^+ + S^-}$$

- Laser cycles between right and left circularly polarized
 - Asymmetry integrated over helicity windows for entire laser-cycle
 - Subtract local background from cavity-unlocked period

- Grouped into ~50-laser-cycle 'slugs' for each laser state
- 1% gain shift between cavity-locked and -unlocked

JLAB Compton Polarimeter Upgrade

PHOTON POLARIZATION

$$P_{elect} = rac{A_{exp}}{P_{phot}A_{th}}$$

- $99.04 \pm 0.80\%$ for laser right, $98.99 \pm 0.80\%$ for laser left
- Laser polarization was found to be stable throughout HAPPEX-III single value for photon polarization was used
 - Photon polarization monitored continuously at end of optical path (as stability check)
 - On-line QWP scans are done "daily"
- Used transfer function measurement to get mean polarization
 - Off-line absolute polarization measurements are made at the Compton interaction point and end of optical path
- Systematic error of 0.8% comes from uncertainty in transfer function measurement

THEORETICAL ASYMMETRY

$$P_{elect} = \frac{A_{exp}}{P_{phot}A_{th}}$$

- Simulated using GEANT4
 - Generate Compton photons
 - Let them interact with beamline items/GSO
 - Include PMT non-linearity
 - Include Radiative Correction
 - Fit MC to triggered data
 - Include 2.5% smearing factor
 - Include detailed pileup
- Use simulation to calculate energy weighted asymmetry

HAPPEX-III ELECTRON BEAM POLARIZATIONS

Final HAPPEX-III polarization results: Compton: $[89.41 \pm 0.05(stat) \pm 0.84(sys) \pm 0.18(gaps)]\%$ Møller: $89.22 \pm 1.7(sys)\%$

SUMMARY OF COMPTON ERRORS

Systematic Errors (Relative)	
Laser Polarization	0.80%
Analyzing Power:	
Non-linearity	0.3%
Energy Uncertainty	0.1%
Collimator Position	0.05%
MC Statistics	0.07%
Total on Analyzing Power	0.33%
Gain Shift:	
Background Uncertainty	0.31%
Pedestal Uncertainty	0.20%
Total on Gain Shift	0.37%
Total	0.94%

Other Errors (Relative)	
Statistical	0.062%
Gaps	0.20%

CONCLUSION

- Upgrade to the photon arm of the Jefferson Lab Hall A Compton Polarimeter is complete
 - New GSO crystal
 - New integrating DAQ

• Better than 1% Compton polarization measurement for HAPPEX-III

REFERENCES

- M. Friend, D. Parno, F. Benmokhtar, A. Camsonne, G. B. Franklin, R. Michaels, S. Nanda, K. Paschke, B. Quinn, and P. Souder, "Upgraded photon calorimeter with integrating readout for Hall A Compton Polarimeter at Jefferson Lab," *Submitted to Nucl. Instr. and Meth. A* (2011), arXiv:1108.3116.
- M. Friend, G. B. Franklin, and B. Quinn, "An LED pulser for measuring PMT linearity," *Submitted to Nucl. Instr. and Meth. A* (2011), arXiv:1108.3096.