

A Diamond Micro-strip Electron Detector for Compton Polarimetry

Amrendra Narayan

Mississippi State University

on behalf of Hall - C Compton Team

Outline

- Qweak Polarimetry requirements
- ❖ Hall C Compton Overview
- Electron detector
- Data Acquisition
- Analysis approach
- Preliminary results

Qweak and Polarimetry

The Qweak experiment aims to measure the weak charge of the proton with a precision of 4.1%, by measuring the parity violating asymmetry in polarized e-p elastic scattering with a precision of 2.5%

Qweak Error Budget			Qweak talk:
Uncertainty	δAPV/APV	δQw/Qw	Katherine Myers, Sept 8
Statistical (~2500 hours at 150 μA)	2.1%	3.2%	<i>J</i> , 1
Systematic:		2.6%	
Hadronic structure uncertainties		1.5%	one of the largest
Beam polarimetry	1.0%	1.5%	experimental
Effective Q ² determination	0.5%	1.0%	contribution to the error budget
Backgrounds	0.5%	0.7%	oner suaget
Helicity-correlated beam properties	0.5%	0.7%	
Total:	2.5%	4.1%	

The Hall-C Moller polarimeter is the highest precision polarimeter at JLab, however it is periodic, invasive and operates only at low currents..

The new Compton polarimeter is **continuous**, **non invasive** and can operate at **high currents**.

Overview: Compton Layout

Parameter	Value	
Beam Energy	1.16 GeV	
Laser Wavelength	532 nm	
Chicane bend angle	10.1 deg	
Electron free drift distance	1.6 m	
Max. Electron Displacement	17 mm	
Compton edge energy	46 MeV	

Overview: Laser Table

- Photon target at center of chicane is Coherent Verdi 10W laser locked to low gain Fabry-Perot cavity
- Power in the cavity is ~ 1kW
- laser polarization > 99%
- low reflectivity mirror in Fabry-Perot cavity allows robust measurement of laser polarization

Overview: γ-Detector

- ➤ Laser cycled on and off with a period of ~ 140 s
- γ detector signal is integrated with no threshold to eliminate sensitivity to gain drift
- Tried CsI crystal at first but found that phosphorescence with ms to second timescales diluted our measurement
- Currently using PbW crystal detector. Less energy resolution but for signal integration this is not an issue.
- Achieving <1% statistical uncertainty in a few hours.

Fit to Yield from CsI during Beam Trip

Overview: e-detector

Through the γ -detector and e-detector we have two independent measurements having different uncertainties hence being a good cross-check on each other

- We use diamond micro-strip detector for detecting the Compton scattered electrons
- We have 4 planes of the detector to allow coincidence measurements

e-detector: working

The detector uses Diamond which is artificially grown using Chemical Vapor Deposition

Diamond micro-strip detectors

- > alumina (ceramic) used for carrier board
- > metallization (on diamond) done with TiPtAu
- detector dimensions : 21 mm x 21 mm
- > detector thickness: 500 μm
- > each detector plate has 96 strips
- \triangleright strip pitch is 200 µm.

e-detector: installation

e-detector: installed

e-detector DAQ

Diamond micro - strip detectors

Amplification, shaping and digitization of the signal

Trigger processed using FPGA based v1495

This is the **first** Diamond micro-strip detector to be used as a tracking device in an experiment

e-detector DAQ

Diamond micro - strip detectors Amplification, shaping and digitization of the signal Trigger processed using FPGA based v1495

Gain: $\frac{200 \text{ mV}}{(10\text{x}10^3) \text{ x } (1.6\text{x}10^{-19})}$ = 120 mV / fC

QWAD boards custom made by TRIUMF

e-detector DAQ

Diamond micro - strip detectors Amplification, shaping and digitization of the signal Trigger processed using FPGA* based v1495

v1495: CAEN general purpose logic modules. The module was programmed for trigger generation and data readout using VHDL

^{*} Field Programmable Gate Array

e-detector DAQ: schematic

e-detector DAQ: Trigger

- to suppress background, we require a coincidence between multiple planes
- default trigger is hits on 2 out of 4 planes
- we localize the trigger in a single detector plane to 4 consecutive strips

Charge normalized strip hit

Asymmetry

$$A = \frac{\left(N_{on}^{+} - r^{+} N_{off}^{+}\right) - \left(N_{on}^{-} - r^{-} N_{off}^{-}\right)}{\left(N_{on}^{+} - r^{+} N_{off}^{+}\right) + \left(N_{on}^{-} - r^{-} N_{off}^{-}\right)}$$

where
$$r^+ = \frac{Q_{on}^+}{Q_{off}^+}$$
 and $r^- = \frac{Q_{on}^-}{Q_{off}^-}$

Laser on: Laser off :: 2:1

Calculating Polarization

Fitting this theoretical asymmetry to the measured asymmetry gives us the beam polarization

Calculating Polarization

• The Compton edge for the theoretical Compton asymmetry is fixed at 17.6 mm from the beam (based on known beam parameters and detector geometry)

• Polarization is obtained by performing a two parameter fit with **polarization**

and effective pitch

$$A_{exp} = \frac{N^+ - N^-}{N^+ + N^-} = P_e P_{\gamma} A_{th} \text{ where } P_e = \frac{A_{exp}}{P_{\gamma} A_{th}}$$

Preliminary Polarization

- 42 days of Compton data
- each point represents a1 hr run
- only Partial systematic error (due to strip pitch) included
- the dotted vertical lines represent spot changes on the photocathode
- the dashed vertical line represents Re-activation
- on an average the beam current was $\sim 160 \mu A$

Quantum efficiency

Zooming into a region of consecutive spot changes:

Polarization was found to drop significantly before the spot move

Systematic errors

Error Contribution	(∼) V alue	
Due to detector strip size	0.2 %	
Detector geometry	0.15 %	
Difference between planes	0.2 %	
Magnetic field	?	
Beam & Laser Position	?	
Dead time	;	
TBD	?	
Laser Polarization	99.5 +/- 0.4% (overall)	
Total	0.50 %	

We don't expect the unknown in the above table to be very large

Summary

Accomplished:

- ✓ This is the first Diamond micro-strip detector to be used as a tracking device in an experiment
- ✓ Despite several challenges posed by the electronic noise environment, leading to strict trigger condition, we achieved the design goal of < 1% statistical uncertainty and projected low systematic

Next:

- ✓ In our preparation for Qweak run-2, We have 4 active planes (already installed)
- ✓ Adapting from experiences of run-1, we are using more noiserobust electronics, with a better control over signal correlations in adjacent channels.
- ✓ All set to provide an independent absolute polarization measurement for Hall-C beam

Compton Team

<u>Institutions involved:</u>

- 1. College of William and Mary (γ detector)
- 2. Jefferson Lab (all subsystems)
- 3. Mississippi State University (e detector)
- 4. MIT Bates (magnets, vacuum can, detector holder, previous CsI crystal for γ detector)
- 5. TRIUMF (Qweak Amplifier Discriminator boards)
- 6. University of Manitoba (e detector)
- 7. University of Virginia (laser and γ detector)
- 8. University of Winnipeg (e detector)
- 9. Yerevan Physics Institute(γ detector and help with e detector)

Alphabetical order

This work was supported by U.S. DoE, Grant Number: DE-FG02-07ER41528

Thanks

This presentation was made possible due to significant contribution from Dipangkar Dutta, Vladas Tvaskis and Donald Jones

The author can be contacted at narayan@jlab.org

Extras

Background subtraction

$$N_{Laser\ On}^{+} = N_{Laser\ On}^{+} - Time_{Laser\ On}^{+} / Time_{Beam\ Off}^{} imes N_{Beam\ Off}^{}$$
 $N_{Laser\ Off}^{+} = N_{Laser\ Off}^{+} - Time_{Laser\ Off}^{+} / Time_{Beam\ Off}^{} imes N_{Beam\ Off}^{}$
 $N_{Laser\ On}^{-} = N_{Laser\ On}^{-} - Time_{Laser\ On}^{-} / Time_{Beam\ Off}^{} imes N_{Beam\ Off}^{}$
 $N_{Laser\ Off}^{-} = N_{Laser\ Off}^{-} - Time_{Laser\ Off}^{-} / Time_{Beam\ Off}^{} imes N_{Beam\ Off}^{}$

why diamond?

Property	Silicon	Diamond	
Band Gap (eV)	1.12	5.45	Low leakage current, short n
Electron/Hole mobility (cm²/Vs)	1450/500	2200/1600	Fast signal
Saturation velocity (cm/s)	0.8×10 ⁷	2×10 ⁷	collection
Breakdown field (V/m)	3×10 ⁵	2.2×10 ⁷	7
Dielectric Constant	11.9	5.7	Low capacitance noise
Displacement energy (eV)	13-20	43	Radiation hardn
e-h creation energy (eV)	3.6	13	1.
Av. e-h pairs per MIP per micron	89	36	Smaller
Charge collection distance (micron)	full	~250	signal

noise

e,

ness

2 parameter fit

x = 17.6 - (strip # of edge - strip # of histogrammed bin)*strip_pitch

x = 17.6 - (strip # of edge - strip # of histogrammed bin)*strip_pitch * P2

Input Reconditioning Stage

DAQ

- We accumulate the counts in the detector over a given Helicity window and read it out at the end of the Helicity window
- Our Helicity reversal rate is ~ 960 Hz
- wait time for Helicity stabilization $\sim 76 \mu s$