Compton polarimetry at PV experiments

Yoshio Imai

A4 Collaboration Johannes Gutenberg-Universität, Mainz, Germany

PAVI2011, Sapienza University, Rome, 07.09.2011

Yoshio Imai, Universität Mainz

Outline

- 2 Compton backscattering polarimetry
- 3 Design concepts
- Operating challenges

Why polarimetry?

PV experimental method:

- scattering experiments with polarized beams

However:

 $A_{rate} = P_e A_{c.s.}$

 \Rightarrow absolute polarimetry needed

Why polarimetry?

PV experimental method:

- scattering experiments with polarized beams

However:

 $A_{rate} = P_e A_{c.s.}$

 \Rightarrow absolute polarimetry needed

• beam polarimetry still (the) major error contribution:

Experiment	stat. err.	total syst.	polarimetry
A4 (2008)	4.8%	5.2%	4.0%
HAPPEx III	2.5%	1.5%	1.0%
G0 (H_2 , high Q^2)	5.2%	1.7%	1.0%

three established methods: Mott, Møller, Compton

three established methods: Mott, Møller, Compton

Low energy only!

three established methods: Mott, Møller, Compton

- spin-1/2 on spin-1/2
- target: magnetized foil
- long. or trans. polarized target
- c.s. asymmetry upon helicity reversal

Advantages

- high luminosity (fast)
- absolute polarimetry
- transv. and long. polarimetry
- relatively compact

Disadvantages

- Iow current only *
- destructive measurement *
- target polarization meas. challenging
- * improvement in progress, see talk by
 E. Chudakov

\Rightarrow see talk by S. Glamazdin for this subject

Yoshio Imai, Universität Mainz

Compton polarimetry at PV experiments

three established methods: Mott, Møller, Compton

- photons on spin-1/2
- target: circ.-polarized photons
- c.s. asymmetry upon helicity reversal

Advantages

- absolute polarimetry
- transv. and long. polarimetry
- high current
- on non-destructive

\Rightarrow continuous monitoring at nominal beam conditions possible!

Disadvantages

- complex to build and operate
- Iow luminosity (slow)

Compton backscattering polarimetry

- based on Compton scattering
- detect final state photon
- relativistic electrons
 ⇒ f.s. photons: high-energy γ's
 ⇒ accessible with standard radiation detection methods

Compton cross-section

$$\frac{d\sigma(\theta,\phi)}{d\Omega} = \frac{d\sigma_0(\theta)}{d\Omega} + Q\frac{d\sigma_1(\theta)}{d\Omega} - VP_e^{long}\frac{d\sigma_2^{long}(\theta)}{d\Omega} - VP_e^{trans}\cos\phi\frac{d\sigma_2^{trans}(\theta)}{d\Omega}$$

with Q, V: "Stokes parameters" (light polarization)

- $Q = \pm 1, V = 0$: linearly polarized light
- $Q = 0, V = \pm 1$: circularly polarized light

Compton cross-section

$$\frac{d\sigma(\theta,\phi)}{d\Omega} = \frac{d\sigma_{0}(\theta)}{d\Omega} + Q\frac{d\sigma_{1}(\theta)}{d\Omega} - VP_{e}^{long}\frac{d\sigma_{2}^{long}(\theta)}{d\Omega} - VP_{e}^{trans}\cos\phi\frac{d\sigma_{2}^{trans}(\theta)}{d\Omega}$$

Yoshio Imai, Universität Mainz

Compton cross-section

use purely circular light

Compton cross-section

- use purely circular light
- consider directional characteristics:

Compton polarimetry at PV experiments

Effective Compton cross-section

$$\frac{d\sigma(\theta)}{d\Omega} = \frac{d\sigma_0(\theta)}{d\Omega} - VP_e^{long}\frac{d\sigma_2^{long}(\theta)}{d\Omega}$$

(as a function of backscattered photon energy)

troduction	Compton polarimetry	Design concepts	Operating challenges	Conclusi
Effecti	ve Compton cross-s	section		
	${d\sigma(heta)\over d\Omega}=$	$=rac{d\sigma_0(heta)}{d\Omega}-VP_e^{long}G$	$rac{d\sigma_2^{long}(heta)}{d\Omega}$	

• switch between left- and right-circular light ($V = \pm P_{\gamma}$):

Building blocks of a polarimeter

- chicane
- photon source (=laser system)
- detector for backscattered photons
- electron detector
- laser polarization measurement

The laser system (or: pushing luminosity to the feasability threshold)

Luminosity ("interaction density")

$$\mathcal{L} = c(1 + \cos \alpha) \int d^3 r \varrho_1(\vec{r}) \varrho_2(\vec{r})$$

- $\bullet~$ measurement time $\propto 1/\mathcal{L} \Rightarrow$ increase \mathcal{L}
- L depends on: intensities, crossing angle, focusing

The laser system (or: pushing luminosity to the feasability threshold)

Luminosity ("interaction density")

$$\mathcal{L} = c(1 + \cos \alpha) \int d^3 r \varrho_1(\vec{r}) \varrho_2(\vec{r})$$

- $\bullet\,$ measurement time $\propto 1/{\cal L} \Rightarrow$ increase ${\cal L}$
- L depends on: intensities, crossing angle, focusing

 \Rightarrow antiparallel geometry

Yoshio Imai, Universität Mainz

The laser system (or: pushing luminosity to the feasability threshold)

Luminosity ("interaction density")

$$\mathcal{L} = c(1 + \cos \alpha) \int d^3 r \varrho_1(\vec{r}) \varrho_2(\vec{r})$$

- $\bullet\,$ measurement time $\propto 1/{\cal L} \Rightarrow$ increase ${\cal L}$
- *L* depends on: intensities, crossing angle, focusing

Yoshio Imai, Universität Mainz

Compton polarimetry at PV experiments

PAVI2011, Rome

- 1. External Fabry-Pérot cavity
 - feed laser output into resonator with $I = n \cdot \lambda/2$

- 1. External Fabry-Pérot cavity
 - feed laser output into resonator with $l = n \cdot \lambda/2$
 - intensity gain by constructive interference

1. External Fabry-Pérot cavity

- feed laser output into resonator with $l = n \cdot \lambda/2$
- intensity gain by constructive interference

1. External Fabry-Pérot cavity

- feed laser output into resonator with $l = n \cdot \lambda/2$
- intensity gain by constructive interference

 $G \cdot \Delta \omega$ = const. \Rightarrow longitudinal stabilization necessary

1. External Fabry-Pérot cavity

- feed laser output into resonator with $I = n \cdot \lambda/2$
- intensity gain by constructive interference

 $G \cdot \Delta \omega$ = const. \Rightarrow longitudinal stabilization necessary

JLab Hall A: high-gain cavity

- ultra-low-absorption mirrors
- old: IR laser, G=7500, 1.7 kW
- new: green, G=5000, 5 kW*

JLab Hall C: low-gain cavity

- (stronger) green laser
- G=100, P=1000 W*
- * preliminary

2. Internal cavity

2. Internal cavity

- lasers already comprise Fabry-Pérot cavity
- output only small fraction of internal recirculating power

2. Internal cavity

- lasers already comprise Fabry-Pérot cavity
- output only small fraction of internal recirculating power
- extend and "close" cavity, use internal power

2. Internal cavity

- lasers already comprise Fabry-Pérot cavity
- output only small fraction of internal recirculating power
- extend and "close" cavity, use internal power

 \Rightarrow no longitudinal stabilization necessary

2. Internal cavity

- lasers already comprise Fabry-Pérot cavity
- output only small fraction of internal recirculating power
- extend and "close" cavity, use internal power

\Rightarrow no longitudinal stabilization necessary

A4 @ MAMI

- green laser
- std. research-grade optics
- opwer: 120 W

Polarimeter design: JLab Hall A,C

- both polarimeters use the same layout
- vertical chicane, beams crossing in horizontal plane (20 mrad)
- cavity length : 0.85 m

Polarimeter design: A4 @ MAMI

Yoshio Imai, Universität Mainz

Impressions

(picture courtesy A. Narayan)

Yoshio Imai, Universität Mainz

Compton polarimetry at PV experiments

PAVI2011, Rome

Introduction

The photon detector

usually a calorimeter

	JLab Hall A*	JLab Hall C	A4 @ MAMI
segmentation	1x1 (11 X ₀)	2x2 (25 X ₀)	3x3 (16 X ₀)
material	GSO(Ce)	PbWO ₄	LYSO(Ce)
density (g/cm ³)	6.7	8.3	7.1
radiation length (cm)	1.38	0.89	1.22
pulse decay time (ns)	30 - 60	10 / 30	41
light yield (% Nal(TI))	20	0.3 / 0.08	75

* see talk by M. Friend

• A4: two types of PMTs, different gain for different beam energies

Yoshio Imai, Universität Mainz

Compton polarimetry at PV experiments

PAVI2011, Rome

Asymmetry extraction

- simple photon counting
- weighted photon counting (e. g. energy-weighting*)
- binwise asymmetry from spectra

- not too different from statistics p.o.v.
- influence of systematics changes dramatically

* see talk by M. Friend

Yoshio Imai, Universität Mainz

- a segmented position-sensitive device
- turn chicane into spectrometer

	JLab Hall A	JLab Hall C*	A4 @ MAMI
type	Si microstrip	diamond microstrip	SciFi array
channels	4 x 192	4 x 96	2 x 24
pitch	240 μ m	200 <i>µ</i> m	600 μ m

* see talk by A. Narayan

picture courtesy A. Narayan

Yoshio Imai, Universität Mainz

Compton polarimetry at PV experiments

- calibration of the photon detector (segmented calorimeters!)
- suppression of uncorrelated background (halo, ...)
- control of photon detector systematics

JLab Hall A (IR)

- parametrize detector response using tagged spectra
- use parametrization to extract Compton asymmetry from full spectra

- calibration of the photon detector (segmented calorimeters!)
- suppression of uncorrelated background (halo, ...)
- control of photon detector systematics

A4 @ MAMI

- calibration of the photon detector (segmented calorimeters!)
- suppression of uncorrelated background (halo, ...)
- control of photon detector systematics

JLab Hall C

 independently measure Compton spectrum using electron detector

see talk by A. Narayan

Laser polarization measurement

- rotating QWP before linear polarizer
- transmitted light: intensity-modulated

$$I(\theta) = \frac{1}{4} \left\{ (2I + Q) - 2V \sin 2\theta + U \sin 4\theta + Q \cos 4\theta \right\}$$

(I: tot. intensity; Q,U: linear components; V: circular component)

Yoshio Imai, Universität Mainz

Laser polarization measurement

rotating QWP before linear polarizertransmitted light: intensity-modulated

- well-established, accurate method
- statistics easily 0.1% rel.
- main challenge: systematics

$$I(\theta) = \frac{1}{4} \left\{ (2I + Q) - 2V \sin 2\theta + U \sin 4\theta + Q \cos 4\theta \right\}$$

(I: tot. intensity; Q,U: linear components; V: circular component)

Yoshio Imai, Universität Mainz

20/25

Laser polarization measurement

- need to know polarization inside cavity
- can only measure outside cavity
- e.g. A4:

Laser polarization measurement

- need to know polarization inside cavity
- can only measure outside cavity
- e.g. A4:

 \Rightarrow measure transport matrix for every window

(Approximate) design comparison

- difficult because all built for different conditions
- approach: compare statistical FOM of designs ($\propto 1/T$)

$$f = \left< \mathbf{A}_{l} \right>^{2} \sigma_{tot} \mathcal{L}$$

• take Hall A IR as reference

(Approximate) design comparison

- difficult because all built for different conditions
- approach: compare statistical FOM of designs ($\propto 1/T$)

$$f = \left< A_{l} \right>^{2} \sigma_{tot} \mathcal{L}$$

• take Hall A IR as reference

	Hall A IR	green	FOM?	Hall C	FOM?	A4	FOM?
λ (nm)	1064	532	x 4	532	x 4	514.5	x 4.3
P _{Laser} (W)	1700	5000	x 2.9	1000	x 0.6	100	x 0.06
lpha (mrad)	20	20	x 1	20	x1	0	x 20
design	:=1		x 11.6		x 2.4		x 5.2
E _e (GeV)	4.6	1	x 0.05	1.17	x 0.06	0.86	x 0.03
<i>Ι_e</i> (μΑ)	40	50	x 1.25	180	x 4.5	20	x 0.5
exp. cond.	:=1		x 0.06		x 0.27		x 0.02
total	:=1		x 0.7		x 0.6		x 0.1

(caveat: some simplifications used)

Yoshio Imai, Universität Mainz

Performance

Hall A IR @ 4.6 Ge	٧
--------------------	---

٩	0.6	%	stat.	in	1	h
---	-----	---	-------	----	---	---

source	contribution
background	0.05%
dead time	0.10%
events cut	0.10%
beam pos.	0.30%
det. response	0.45%
energy calib.	0.6%
pile-up	0.45%
radiative	0.26%
laser polarization	0.60%

A4 @ 855 MeV*

• 2 % stat. in 11 h (beam profile!)

source	contribution
lower thr.	0.20%
fibre det. geom.	0.26%
dead time	0.19%
random coinc.	0.20%
background	0.02%
energy calib.	0.12%

- + laser polarization
- * preliminary numbers!

S. Escoffier et al., NIM A 551 (2005) 563 - 574

Design concepts

Performance

Hall A IR @ 4.6 GeV

- 0.6 % stat. in 1 h
- 1.4 % syst.

Hall A green @ 1 GeV*

- 1.0 % stat. in 1 h
- 0.9 % syst.

see talk by M. Friend

Hall C @ 1.17 GeV*

- 1% stat. in 1 h
- (0.55 + x)% syst.

see talk by A. Narayan

A4 @ 855 MeV*

- 2 % stat. in 11 h (beam profile!)
- (0.45 + x)% syst.

* preliminary numbers!

• mainly an issue for A4 polarimeter

- mainly an issue for A4 polarimeter
- 3 customized wire scanners

- mainly an issue for A4 polarimeter
- 3 customized wire scanners
- iterative computer-assisted overlap optimization

- mainly an issue for A4 polarimeter
- 3 customized wire scanners
- iterative computer-assisted overlap optimization

- mainly an issue for A4 polarimeter
- 3 customized wire scanners
- iterative computer-assisted overlap optimization

 \Rightarrow finished in 20 min. even from scratch!

Conclusion

- Compton polarimetry is reliable, established method
- so far, only non-invasive method for modern PV experiments
- techniques for precision polarimetry at demanding conditions exist (Hall A IR, A4)
- improvements for next generation of PV experiments underway (Hall A green upgrade, Hall C)

 \Rightarrow Compton polarimetry will keep its decisive role in PV for near future

• will be complemented by advanced Møller techniques soon Thanks to: W. Deconinck, M. Friend, A. Narayan and K. Paschke for information on the JLab polarimeters!

Photon detector calibration

- in particular for segmented calorimeters
- low-energy: radioactive sources (⁶⁰Co, gammas from neutron capture, LYSO intrinsic activity ...)
- high-energy: on the beam, using electron detector as tagger

center every crystal on beam \Rightarrow same spectrum for all crystals