NEWS FROM THE LHC

Daniele del Re
Sapienza Università & INFN Sezione Roma
Open Questions in SM

Main open questions in Particle Physics:

- Hierarchy problem: small Higgs mass vs large Planck Mass
- Does Higgs boson exist?
- Origin of Dark Matter
- Flavor puzzle: flavor parameter small and hierarchical
- Neutrino masses
- ...

LHC will give an answer to many of those
Multiple Ways to Crosscheck SM @ LHC

- search for the Higgs
 - in the whole mass range $O(100\text{GeV} \div 600\text{GeV})$
- measure SM parameters
 - e.g. forward-backward asymm., m_t
- look for deviations in EWK processes
 - e.g. anomalous triple gauge couplings
- check for processes beyond SM
 - e.g. SUSY with missing E_T
- search for new resonances
 - e.g. Z' at large masses
Outline of the Talk

- focus on the **EWK physics results**
 - W/Z
 - Top
 - Higgs
- some flavor of **searches** of physics **beyond SM**
- **DISCLAIMER:**
 - ATLAS/CMS oriented talk
 - small fraction of physics results detailed
- **complete list** of physics output here:
 - **ATLAS:** https://twiki.cern.ch/twiki/bin/view/AtlasPublic
 - **CMS:** https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults
LHC and Integrated Luminosity

- **pp collisions at 7TeV**
- **great performance, beyond expectations**
 - luminosity peak \(\sim 2.2 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1} \)
 - \(\sim 80 \text{ pb}^{-1}/\text{day} \)
 - 50 ns bunch spacing
- \(\sim 2.7 \text{ fb}^{-1} \) delivered so far
- \(<6-7 \text{ collisions}> \) per crossing

Future:
- **fast increase** in luminosity
- \(O(5-10 \text{ fb}^{-1}) \) expected for Moriond12
- \(O(30 \text{ fb}^{-1}) \) expected for end of 2012
Detectors

<table>
<thead>
<tr>
<th></th>
<th>ATLAS</th>
<th>CMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic Field</td>
<td>solenoid (2 T) + toroid (0.5÷1T)</td>
<td>3.8 T solenoid + return yoke</td>
</tr>
<tr>
<td>Tracker</td>
<td>Si pixel, strips + TRT</td>
<td>Si pixel, strips</td>
</tr>
<tr>
<td>EM Calorimeter</td>
<td>Pb + LAr</td>
<td>PbWO4 crystals</td>
</tr>
<tr>
<td>Had Calorimeter</td>
<td>Fe+scint./Cu+LAr/W+Lar (≥11λ)</td>
<td>Brass+scintillator(≥7λ)/Fe+quartz</td>
</tr>
<tr>
<td>Muon</td>
<td>air-toroid muon spectrom.</td>
<td>iron return-yoke muon spectrom.</td>
</tr>
<tr>
<td>Trigger</td>
<td>L1+Rol-based HLT</td>
<td>L1+HLT</td>
</tr>
</tbody>
</table>
Reconstructed Objects: Summary

<table>
<thead>
<tr>
<th>Electrons</th>
<th>Muons</th>
<th>Photons</th>
</tr>
</thead>
<tbody>
<tr>
<td>• track/calo-cluster match</td>
<td>• match between tracker and muon detector</td>
<td>• calo-only+conversions (with tracker)</td>
</tr>
<tr>
<td>• isolation to reject jets</td>
<td>• isolation to reject jets</td>
<td>• isolation to reject jets</td>
</tr>
<tr>
<td>• scale known to 0.3%-1.5%</td>
<td>• scale known to better than 1.0%</td>
<td>• scale known to better than 1.0% (CMS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jets</th>
<th>MET</th>
</tr>
</thead>
<tbody>
<tr>
<td>• reconstructed with calorimetric deposits, with tracks or with the whole detector information</td>
<td>• negative vector sum of -calorimetric objects</td>
</tr>
<tr>
<td>• anti-Kt algorithm</td>
<td>-(or) tracks</td>
</tr>
<tr>
<td>• ΔR cone 0.4-0.5</td>
<td>-(or) all objects from whole detectors</td>
</tr>
<tr>
<td>• scale known to 2%-8% ((p_T \text{ and } \eta \text{ dep.}))</td>
<td>• projected on the transverse plane</td>
</tr>
<tr>
<td></td>
<td>• cleaning to remove detector noise</td>
</tr>
</tbody>
</table>

Fantastic detector performance, already close to design
Reconstructed Objects: Calibration

ATLAS

Electrons

CMS

Muons

Photons

Jets

MET

CMS

CMS-PAS-EWK-10-005

$\pi^0 \rightarrow \gamma \gamma$ Calibration Trigger

$\sigma_{data} = 8.2\%$

$\sigma_{MC} = 8.1\%$

$\sqrt{s} = 7$ TeV

ATLAS

Data 2010 $\sqrt{s} = 7$ TeV

MC $W \rightarrow e\nu$

MC $W \rightarrow \tau\nu$

MC $ttbar$

MC WW

MC $Z \rightarrow ee$

MC WZ
HIGH ENERGY FRONTIER: NICE DISPLAY

\[m(\text{jet-jet}) = 4.0 \, \text{TeV} \quad \text{Missing } E_T = 100 \, \text{GeV} \]
TUNING OF TRIGGERS

Dimuon mass distribution obtained from overlapping several trigger paths.
PILE-UP CHALLENGE

Past: <nPU> ~ 6. Future: <nPU> > 15!
Precise W/Z measurements important for many reasons:

- **deviations** from SM as a sign of new physics, e.g. anomalous TGCs in di-boson production
- **test of perturbative QCD**, constrain proton PDFs
- **understand backgrounds** for new physics searches and Higgs
- **detector and physics objects** fine tuning
 - W, Z: source of isolated high p_T leptons
 - benchmark for lepton reconstruction and identification (understand efficiency, resolution)
- **crosschecks for LHC luminosity**
W and Z Production and Signature

LO:

\(\text{DY} \quad \text{W/Z} + \text{jet} \)

Rate: 10M W per fb\(^{-1}\) (\(\#Z \sim 1/10 \) of the \(\#W\))

Signature:

1) \(\sim\)high \(p_T\) and isolated leptons
2) missing \(E_T\) (W) due to neutrino
W and Z Extraction and Backgrounds

W → ev

CMS preliminary

36 pb⁻¹ at √s = 7 TeV

- Use of missing E_T or transverse mass $m_T = \sqrt{2p_T^e p_T^\tau (1 - \cos(\phi_e - \phi_\tau))}$

Z → ee

ATLAS

- Di-lepton invariant mass

Backgrounds:

QCD (real or fake leptons), EWK WW, WZ, ZZ, W with tau decay, Z with one missing lepton (background to W)
W/Z Cross Section

- **inclusive cross section** (and vs pseudorapidity) **sensitive to PDFs** (due to acceptance cuts)

- **cross section vs p_T** **sensitive to extra jet radiation**, i.e. to NLO corrections

Ratio limited by theory systematics

(PDF + fixed order calculation)
Charge Asymmetry

- at LHC W charge asymmetry due to $N(u_v) > N(d_v) \Rightarrow N(W^+) > N(W^-)$

- W pseudo-rapidity cannot be reconstructed \Rightarrow **lepton asymmetry**

\[
A_{exp}(\eta) = \frac{\frac{dN}{d\eta} (\ell^+) - \frac{dN}{d\eta} (\ell^-)}{\frac{dN}{d\eta} (\ell^+) + \frac{dN}{d\eta} (\ell^-)}
\]

- inclusive measured to be 1.43 ± 0.05 (CMS)

- asymmetry vs pseudorapidity to check u/d ratio and sea antiquark densities in different ranges of x
W Polarization

• at LHC dominant high p_T W+jet production mechanism is $qg \rightarrow Wq$

• combining with V-A nature of weak interactions

\Rightarrow W is polarized: left handed

• $\cos\theta^*$ (angle of the lepton in the W rest frame with respect to the W direction in the lab) cannot be measured (neutrino p_z unknown)

\Rightarrow use of

$$L_p = \frac{\vec{p}_T(\ell) \cdot \vec{p}_T(W)}{|\vec{p}_T(W)|^2}$$

News from the LHC
Drell-Yan FB Asymmetry

\[A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B} \]

where
\[\sigma_F \text{ for } \cos\theta^*_{CS} > 0 \]
\[\sigma_B \text{ for } \cos\theta^*_{CS} < 0 \]

\[\theta^*_{CS} = \text{so called Collins-Soper angle} \]
calculated with respect to direction closer to dilepton direction

- sensitive to \(\sin^2\theta_W \)
- in bins of \(M_\parallel \) and looking at the full kinematics

\[\sin^2\theta_{\text{eff}} = 0.2287 \pm 0.0020\,(\text{stat.}) \pm 0.0025\,(\text{syst.}) \]

to be compared with (world ave.) \(0.23153 \pm 0.00016 \)
\[\text{(D0 exp)} \quad 0.2309 \pm 0.0010 \]
ZZ/WW/ZW Cross Section

- **fundamental test** of the Standard Model
 - self interaction between ewk bosons, triple gauge couplings (TGC)
- **probe for new physics** (resonances, anomalous TGC)
- **backgrounds for Higgs** searches (high mass)

\[
\sigma(WW) = 48.2 \pm 4.0 \text{(stat)} \\
\pm 6.4 \text{(syst)} \pm 1.8 \text{(lumi)} \text{ pb}
\]

\[
\sigma(WZ) = 17.0 \pm 2.4 \text{(stat)} \\
\pm 1.1 \text{(syst)} \pm 1.0 \text{(lumi)} \text{ pb}
\]

\[
\sigma(ZZ) = 3.8^{+1.5}_{-1.2} \text{(stat)} \pm 0.2 \text{(syst)} \\
\pm 0.2 \text{(lumi)} \text{ pb}
\]

\[
\text{(NLO expected 46\pm3 pb)} \\
\text{(NLO expected 19.790\pm0.088 pb)} \\
\text{(NLO expected 6.4\pm0.6 pb)}
\]
LHC: FROM EWK PHYSICS TO HIGGS

25 years

6 months

Dec 2010 data

Jun 2011 data

CMS

Higgs
TOP PHYSICS
Top Physics: Motivations

- **most massive** constituent of matter
- **$M(\text{top}) \sim$ EW breaking scale**
- decay and strong production rate as tests of SM
- coupling to the Higgs ~ 1
 - Special role in EWK symmetry breaking?
- various **scenarios with direct/indirect coupling to new physics**
 - from extra dimensions to new strong forces
Top Production

probe low x in pdfs \rightarrow gluon fusion dominated

top pairs:
strong

$\sigma = 165^{+11}_{-11} \text{ pb}$

t chan

$\sigma = 64^{+3}_{-3} \text{ pb}$

Wt chan

$\sigma = 15.7^{+1.3}_{-1.4} \text{ pb}$

s chan

$\sigma = 4.6\pm0.3 \text{ pb}$

Aliev et al 2011
Beneke et al 2010
Langefeld Moch
Uwer 2009
Moch, Uwer 2008

Kidonakis 2010
Top Pair Signatures and Selection

- **Top decays before it can hadronize**
 - almost exclusively $t \rightarrow Wb$

- **Top pair event classification**

 - **Dileptons**
 - BR $\sim 5\%$
 - Background small mainly $Z+\text{jets, EW}$

 - **Lepton + jets**
 - BR $\sim 30\%$
 - Background moderate mainly $W+\text{jets}$

 - **All hadronic**
 - BR $\sim 46\%$
 - Background high mainly QCD

Diagram

- **ATLAS Preliminary**
 - All channels
 - Data
 - Events $\int L dt = 0.70 \text{ fb}^{-1}$
 - Dilepton

- **CMS Preliminary**
 - 1.09 fb$^{-1}$ at $\sqrt{s} = 7 \text{ TeV}$
 - CMS fully hadronic

Daniele del Re

News from the LHC
TOP PAIR CROSS SECTION

- measurements using **different signatures** with similar performance from both experiments performed
- most precise measurement now at ~7% uncertainty
- combination not yet there but can be as low as 5%
- NNLO calculation to be challenged
- also **sensitive to PDFs**
Single Top

- challenging because of **small cross section and large bkg**
- **measurement of** V_{tb}, **b-parton in proton, anomalous couplings**
- s-channel even more challenging at LHC
- require leptons+(b)jets+MET

For $M_t = 172.5$ GeV

<table>
<thead>
<tr>
<th></th>
<th>σ_{tb}</th>
<th>σ_{tqb}</th>
<th>σ_{tW}</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp @ 7 TeV</td>
<td>4.6 ± 0.3 pb</td>
<td>$64.6 \pm 3.3 -2.6$ pb</td>
<td>15.7 ± 1.4 pb</td>
</tr>
</tbody>
</table>

large at Tevatron
small at Tevatron
Single Top Results

t-channel “seen” by both experiments

ATLAS: \(\sigma_t = 90^{+9}_{-9}^{\text{(stat)}} +^{31}_{-20}^{\text{(syst)}} \) pb

CMS: \(\sigma = 83.6 \pm 29.8 \text{ (stat + syst)} \pm 3.3 \text{ (lumi)} \) pb

not enough sensitivity for s-channel and Wt production

ATLAS

s-channel: \(\sigma_s < 26.5 \) pb

Wt: \(\sigma(pp \rightarrow Wt + X) < 39.1 \) pb (obs.)
Top Charge Asymmetry

- at leading order in SM, quark pair production symmetric under charge conjugation
- at higher orders asymmetry appears (sensitive to NP)
- wider pseudorapidity distribution for top compared to anti-top

\[A_{C} = \frac{N(\Delta|Y| > 0) - N(\Delta|Y| < 0)}{N(\Delta|Y| > 0) + N(\Delta|Y| < 0)} \]

\[\Delta|Y| = |Y_t| - |Y_{\bar{t}}| \]

<table>
<thead>
<tr>
<th>CMS</th>
<th>(A_{C}^{n} = -1.6 \pm 3.0 \text{(stat)}^{\pm1.0 \text{(syst)}} %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLAS</td>
<td>(A_{C}^{y} = -2.4 \pm 1.6 \text{(stat)} \pm 2.3 \text{(syst)} %)</td>
</tr>
</tbody>
</table>

ATLAS Preliminary

\(\int L = 0.70 \text{ fb}^{-1} \)

\[\mu + \geq 4 \text{ jets (b tag)} \]

Events

![Graph showing the distribution of top and anti-top quarks](image)
Top Mass

- done in **dilepton and lepton + jets modes**
- full sample not yet used (36-700pb⁻¹)
- **statistical** error already similar to Tevatron
- need to **work on systematics**. Main contributions:
 - jet energy scale
 - ISR/FSR

Mass of the Top Quark

August 2011 *(preliminary)*

CDF-I dilepton

CDF-I dilepton

CDF-II dilepton

CDF-II dilepton

DØ-I dilepton

167.4 ± 11.4 (±10.3 ± 4.9)

CDF-I lepton+jets

168.4 ± 12.8 (±12.3 ± 3.6)

CDF-II lepton+jets

170.6 ± 3.8 (±2.2 ± 3.1)

DØ-II lepton+jets

174.0 ± 3.1 (±1.8 ± 2.5)

CDF-I alljets

176.1 ± 7.4 (±5.1 ± 5.3)

CDF-II alljets

180.1 ± 5.3 (±3.9 ± 3.0)

DØ-II alljets

173.0 ± 1.2 (±0.6 ± 1.1)

CDF-I MET+jets

174.9 ± 1.5 (±0.8 ± 1.2)

CDF-II MET+jets

186.0 ± 11.5 (±10.0 ± 5.7)

Tevatron combination

173.2 ± 0.9 (±0.6 ± 0.8)

χ²/dof = 8.3/11 (68.5%)

Atlas lepton+jets

175.0 ± 2.8 (±0.9 ± 2.7)

CMS lepton+jets/dilepton

173.4 ± 3.3 (±1.9 ± 2.7)

arXiv:1007.3178
BSM Searches
SUSY as a Possible SM Extension

- **new symmetry** between fermions and bosons (every SM particle has a partner differing by 1/2 in spin)
- **solves hierarchy and other SM problems**
- **SUSY particles** produced in pairs
- **stable and neutral lightest SUSY particle** (LSP)
 - good candidate for Dark Matter

<table>
<thead>
<tr>
<th>SM Particles</th>
<th>SUSY Particles</th>
</tr>
</thead>
<tbody>
<tr>
<td>quarks: (q)</td>
<td>squarks: (q)</td>
</tr>
<tr>
<td>leptons: (l)</td>
<td>sleptons: (\tilde{l})</td>
</tr>
<tr>
<td>gluons: (g)</td>
<td>gluino: (\tilde{g})</td>
</tr>
<tr>
<td>charged weak boson: (W^\pm)</td>
<td>(W^\pm) (\tilde{W}^\pm)</td>
</tr>
<tr>
<td>Higgs: (H^0)</td>
<td>Wino: (\tilde{H}^\pm) (\tilde{H}^0)</td>
</tr>
<tr>
<td>neutral weak boson: (Z^0)</td>
<td>(Z^0) (\tilde{Z}^0)</td>
</tr>
<tr>
<td>photon: (\gamma)</td>
<td>photino: (\gamma)</td>
</tr>
</tbody>
</table>
SUSY: SIGNATURE

Event topology:

• high p_T jets from squark-gluino decays
• large missing E_T from LSP
• high p_T leptons from sgaugino/slepton
• high p_T b-jets, τ-jets depending on models
Searches in Jets + MET

- **Strong production of massive particles**
 - require high p_T jets
 - leptons are vetoed

- **Different techniques**:
 - large missing E_T
 - large jet hadronic transverse energy (H_T)
 - large jet multiplicities (large cascades)
 - QCD topology rejection

- **Striking signature** from SUSY
Searches in Leptons + MET

- require leptons + MET

- different lepton selections
 - 1 lepton
 - 2 opposite-sign leptons (same cascade)
 - 2 same-sign leptons with same or opposite flavor (opposite cascades)

- use kinematic constraint of the SUSY cascade to identify signal

- less stringent limits than fully hadronic but complementary
SUMMARY OF SUSY RESULTS

- no hints of SUSY so far
- much more stringent limits than for previous experiments
 - limits at 1TeV for \(m(\text{squark}) = m(\text{gluino})\)
- \(x10\) statistics helps but limited by 7TeV energy
SEARCHES FOR HEAVY RESONANCES

• predicted by numerous extensions of SM
 – sequential SM, GUT-inspired theories, technicolor, Kaluza-Klein ED

• relatively clean with good S/B and identified by a peak!

• care for energy/momentum reconstruction above 1 TeV

• no peak so far

![Graphs showing di-μ and di-jet results from ATLAS and CMS](image-url)
All Exotica Searches

- Full list, to have a feeling of the scanned phase-space

- CMS
 - similar for ATLAS
Higgs Physics
in SM electroweak symmetry broken via the Higgs mechanism

\[V(|\phi|) = \mu |\phi|^2 + \lambda |\phi|^4 \]

- W and Z bosons acquire mass, photon remains massless
- Higgs not yet seen
- limits for the Higgs bosons from direct searches and global EW fits

http://arxiv.org/abs/1107.0975 \(M_H \, \text{GeV} \)
Higgs Cross Sections @ LHC and BR
Higgs Cross Sections @ LHC and BR
Higgs Cross Sections @ LHC and BR

- $M_H < 130$ GeV
 - $H \rightarrow \gamma\gamma$ dominates

- 130 GeV $< M_H < 200$ GeV
 - $H \rightarrow WW$ dominates

- $M_H > 200$ GeV
 - $H \rightarrow ZZ$ dominates
BACKGROUND, SIGNATURE, AND S/B

<table>
<thead>
<tr>
<th>mode</th>
<th>backgrounds</th>
<th>signature</th>
<th>S/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>H→γγ</td>
<td>born/box diphoton QCD photon+ jet</td>
<td>two photons peak in inv. mass</td>
<td>low O(0.1)</td>
</tr>
<tr>
<td>H→WW</td>
<td>ttbar drell-yan pp→WW</td>
<td>two leptons with opposite charge MET</td>
<td>medium O(1)</td>
</tr>
<tr>
<td>H→ZZ</td>
<td>pp→ZZ</td>
<td>four leptons with right charge peaks in inv. mass (Z and Higgs)</td>
<td>high >1</td>
</tr>
</tbody>
</table>
• **crucial** channel in the mass **region preferred by EWK fit**

• **sensitivity** to either excluded or see Higgs **not reached yet**
 – exclusion at about **3xSM**

• with **O(10fb⁻¹)** possible to give a **final answer**
• best channel for exclusion in the **intermediate mass region**
 – but **tough for discovery** since no peak
• MET and topology requirements (e.g. $\Delta \phi$ between leptons)
• exclusion in $140\text{GeV} < M_H < 200\text{GeV}$
\[H \rightarrow ZZ \]

- **very clean** signature (peak over ZZ SM) **but low statistics**
 - best channel for discovery at high masses
- **sensitivity** (>200GeV) already reached
- exclusion in combination with other ZZ modes (e.g. 2l2ν)
Higgs Combination: Upper Limit

- final limits **combining more than 10 channels**
- ATLAS-CMS combination in progress
- expect that at 95% confidence level Higgs is excluded in region $140 \text{GeV} < M_H < 450 \text{GeV}$
Higgs Combination: P-Value

- **p-value** = probability that data are consistent with a background-only hypothesis
- **no significant excess yet...**
Higgs: Conclusions and Perspectives

- **Tevatron results are almost superseded** (except for very low mass)
- Higgs with **large mass (>140GeV)** is unlikely
 - excluded with a decent CL by LHC
- **tough job at low masses**
 - major player will be $H \rightarrow \gamma\gamma$
- **Personal view:**
 - $O(10 fb^{-1})$ enough to exclude on the whole range
 - $\Rightarrow \sim$ Moriond 2012
 - end of 2012 for a final answer
CONCLUSIONS

- **LHC is doing great.** >2fb⁻¹ so far. Fast increase expected
- **Fantastic performance of ATLAS and CMS**
 - physics objects and trigger already deeply understood
- **Wide physics output (>100 ATLAS+CMS papers)**
 - EWK and Top physics already at precision level
 - extensive searches of physics beyond SM
 - Higgs hunting providing world-best exclusions
- **Short summary of searches**
 - no hint of new physics or Higgs. Exclusion at 95% CL:

SUSY \(m_{\text{squark}} = m_{\text{gluino}} \)	<1TeV
New Gauge Bosons (Sequential SM)	<2TeV
Higgs	\(140 \text{GeV} < M_H < 450 \text{GeV} \)
dilepton rest frame