

dRICH electronics integration and SiPM Roberto Preghenella

INFN Bologna activities involving BO, CS, CT, FE, SA, TO

incontro con referee EIC_NET 31 agosto, Bologna

preghenella@bo.infn.it

stato R&D

Neutron fluxes at the dRICH photosensor surface

1-MeV neutron equivalent fluence (1 fb⁻¹ ep running)

location of dRICH photosensors mean fluence: $3.9 \ 10^5 \ neq \ / \ cm^2 \ / \ fb^{-1}$ max fluence: $9.2 \ 10^5 \ neq \ / \ cm^2 \ / \ fb^{-1}$

• radiation level is moderate

assume fluence: ~ 10⁷neq / cm² / fb⁻¹ conservatively assume max fluence and <u>10x safety factor</u> Most of the key Physics goals defined by the NAS require an integrated luminosity of 10 fb⁻¹ per center of mass energy and polarization setting

The nucleon imaging programme is more luminosity hungry and **requires 100 fb**⁻¹ per center of mass energy and polarization setting

in 10-12 years the EIC will accumulate 1000 fb⁻¹ integrated \pounds corresponding to an integrated fluence of ~ 10¹⁰ n_{ed}/cm²

study the SiPM usability for single-photon Cherenkov imaging applications in moderate radiation environment

 $\label{eq:studied_in_steps} \begin{array}{ll} \rightarrow \mbox{ radiation damage studied in steps of radiation load} \\ 10^9 \ 1-\mbox{MeV} \ n_{eq}/\mbox{cm}^2 & \mbox{ most of the key physics topics} \\ 10^{10} \ 1-\mbox{MeV} \ n_{eq}/\mbox{cm}^2 & \mbox{ should cover most demanding measurements} \\ 10^{11} \ 1-\mbox{MeV} \ n_{eq}/\mbox{cm}^2 & \mbox{ might never be reached} \end{array}$

3

Studies of radiation damage on SiPM

in 2023 done also neutron irradiation and variable proton energy irradiation

Ageing model

max acceptable DCR for Physics performance ~ 10 noise hits / sector within 500 ps

model input from R&D measurements (up to

- DCR increase: 500 kHz/10⁹ n_{en}
- residual DCR (online annealing): 50
- residual DCR (oven annealing): 15 k

1-MeV neq fluence from background group (

- 9 10⁶ n_{ea} / fb⁻¹
- includes 10x safety factor

New SiPM custom boards for characterisation (2023 program)

• 35 new boards have been produced

- same design from 2020
- populate only 3 rows
 - 4 sensors, for minimal statistical sample
- sensors from Hamamatsu
 - S13360-3050
 - S13360-3075
 - S14160-3050
- \circ replaced 50 Ω RC resistors with ferrite beads
 - allow to perform annealing
 - same components used for prototype

• irradiation studies

- proton energy scan (TIFPA)
 - irradiation done in June 2023
- neutron damage (LNL)
 - irradiation to done in August 2023
- more proton irradiation (TIFPA)
 - November December 2023

• annealing studies

- online annealing
 - forward and reverse bias
- detailed studies of annealing techniques
 - time and temperature dependence
 - comparison of different techniques

these boards will suffice to cover 2024 irradiation campaigns

Characterisation setup in Cosenza

IV characteristics of 3 different SiPM types compared measured both in Bologna and Cosenza setups

- Bologna uses climatic chamber
- Cosenza uses AirBox air-cooled Peltier setup

the results are nicely compatible between the two setups Cosenza setup is up and running to efficiently contribute to SiPM R&D and characterisation

Characterisation of new SiPM boards

INFŃ

2022 test beam at CERN-PS

dRICH prototipe on PS beamline with SiPM-ALCOR box

beamline shared with LAPPD test

ALCOR inside

successful operation of SiPM

<u>irradiated</u> (with protons up to 10¹⁰) and <u>annealed</u> (in oven at 150 C)

time coincidences

New detector plane for 2023 beam tests

a few prototype photodetector units will be assembled and tested in September before mounting them on the dRICH detector prototype for the beam test

prototype EIC-driven readout unit and readout box

prototype PDU

dRICH SiPM prototype photodetector unit (PDU)

• large-area EIC-driven SiPM optical readout for the dRICH prototype

- based on ALCOR readout
- milestone deadlines (eRD102 project)
 - realisation: April 2023
 - beam test: October 2023

• SiPM sensors and layout

- each readout unit comprises of
 - 4 Hamamatsu 8x8 matrices
 - 256 channels
- \circ ~ 52 x 52 mm² area

design with layout as close as possible to needs for final experiment

- critical engineering exercise in view of TDR
- place cooling and electronics on the back of the sensors

use as much as possible of current electronics architecture

- no manpower capacity to develop new FPGA board this year
- no manpower capacity di develop new firmware this year
- use ALCORv2 (32 channels)

design new electronics boards to fit the new layout configuration

possibly with the same features, if all needed

Prototype photodetector unit (PDU)

Prototype PDU status

• acquired 20x Hamamatsu 8x8 SiPM matrix arrays

- eRD102 funds
- sufficient to populate 4 full PDUs + 1 spare
- map MAPMT readout layout
- \circ $\,$ for 2023 beam test we eventually decided to optimise for testing
 - populated 4 full carrier boards
 - populated 4 partial carrier boards

• produced electronic boards needed, with spares

- 1x carrier board / PDU
- 4x adapter boards / PDU
- 4x ALCOR boards / PDU
- 8x ALCOR chips / PDU
- 4x Masterlogic boards / PDU

• acquired ancillary material and boards

- many cables
- Peltier modules
- FPGA boards
- clock distribution
-).

• produced mechanical pieces for 10x PDUs

- cooling hardware
- mini-crate for electronics

extend the readout to cover the full area in 2024

INFN fund requests to acquire more SiPM and electronics → produce 4 PDUs + 1 spare

SiPM layout (2023)

						-0
U2	U4	U2	U4	U2	U4	
U1	U3	U1	U3	U1	U3	
U2	U4			U2	U4	
U1	U3	2		U1	U3	
U2	U4	U2	U4	U2	U4	
U1	U3	U 1	U3	U1	U3	

SiPM layout (2024)

U2	U4	U2	U4	U2	U4
U1	U3	U1	U3	U1	U3
U2	U4			U2	U4
U1	U3			U1	U3
U2	U4	U2	U4	U2	U4
U1	U3	U1	U3	U1	U3

Photodetector unit

conceptual design of final layout

INFN

plans for realisation of the final prototype units

- 2024: readout board (RDO) realisation and test beam
- 2024: front-end board (FEB) with ALCOR-v3 (64ch BGA)
- 2025: final SiPM carrier realisation and test beam

Readout board

conceptual design of RDO architecture

current breakout board already existing (2023 test beam)

connects current ALCOR FireFly electronics to FMC connector of commercial FPGA board

time to start developing custom readout boards for 2024 beam tests and TDR

2024: design and develop 10x RDO boards

- close to the final RDO design and PDU layout
- with the capability to also serve current electronics

new breakout board to be made in 2024

needed to connect current ALCOR FireFly electronics to RDO high-density connector

INFN funds requested for realisation of 10x RDO boards, 10x new breakout boards, acquire FireFly cables and data aggregator DAQ system (Virtex FPGA + server)

INFŃ

INFN

The great management plan towards construction

	Year		2023			2024			2025					_					
		Quarter	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	design	f.			
	TDR									х					order				
Milestone	test beam		N			Х				Х		X		X	roady	,			
	SiPM carrier	v2													Teauy				
Sensors	SiPM carrier	vF																	
	ALCOR	v2																	
	ALCOR-FE	v2																	
	ADAPTER	v2																	
	MasterLogic	v2													import				
front-end	ALCOR	v64																	
	FEB	v64													TDR in	<mark>ו 202</mark> ו	4:		
	packaging														have v	urity			
	ALCOR	vF																	
	FEB	vF													beam	tests	in 2025	:	
	KC705		-												test the	e fina	l layout a	and the	Э
	RDO	v2													electro	nics	5		
readout	breakout boards	v2																	
	VC709																		
	felix																		
	RDO VF																		

attività e richieste 2024

Summary

• sviluppo prototipi readout board RDO

- Sviluppo e produzione di 10 schede prototipo Readout Board dRICH RDO
- Produzione e assemblaggio di 10x schede JC23-225 Breakout board
- Cavi interfaccia scheda-scheda SAMTEC FireFly ad alta velocità
- KIT SVILUPPO, VIRTEX-7 FPGA
- Server con processore aggiuntivo e 32 GB di RAM per readout RDO

realizzazione nuovi prototipi di photodetector units PDU

- Acquisto componenti, cavi e materiale per l'assemblaggio e test dei prototipi
- Produzione e assemblaggio SiPM carrier boards per PDU prototipo
- Matrici 8x8 SiPM Hamamatsu S13360 per prototipo dRICH
- produzione e assemblaggio di schede ADAPTER-64
- produzione e assemblaggio di schede ALCOR-DUAL
- produzione e assemblaggio di schede MasterLogic-v2

• strumentazione ed equipaggiamento per test in laboratorio e su fascio

- Sistema chiller con liquido di circolazione e tubazioni coibentate
- Oscilloscopio da banco/portatile 4 ch. analogici, 16 ch. digitali, 200MHz
- Picoamperometro da banco Keithley 6487/E, 20mA ca, Cert. LAT
- ThinkCentre M75T Desktop con monitor e scheda di rete aggiuntiva
- Essiccatore aria SMC IDFA11E-23
- Compressore d'aria da laboratorio
- Gruppo di continuità

• collaborazione e attività di R&D su SiPM (sinergie DRD4)

- missioni per collaborazione tra le sezioni di BO, CS, CT, FE, SA
- spese per fascio presso il Centro di ProtonTerapia di Trento
- missioni per test di irraggiamento presso il TIFPA, Legnaro e il CERN

END

SiPM cooling for low-temperature operation (-30 °C or lower)

external chiller with fluid recirculation (ie. siliconic oil) the chiller here one is just a commercial example cooling and heating capacity could use heating capability for annealing? must be demonstrated to be feasible cooling capacity at -40 C is large (1.5 kW)

Û.	General & Temperature Control				ĥ					e	
	Temperature range	-5525	50 °C								
	Temperature stability	±0,01 K									
¢]	Heating / cooling capacity										
	Heating capacity	6 kW									
		250	200	100	20	0	-20	-40	-50	°C	
	Cooling capacity	6	6	6	6	6	4,2	1,5	0,65	kW	

climatic chamber

27

climatic chamber

• SiPM signal at <u>0.5 pe</u> (average amplitude) time-amplitude correlation (walk) corrected

measured to be σ_{sync} = 30 ps

comparison at same Vover not totally fair

Comparison between different sensors

important to consider PDE (and SPTR) → SNR ~ PDE / DCR unlikely 2x larger DCR is matched by 2x larger PDE

Carrier board V2

mounts 4x SiPM sensor matrices (256 total channels) receives HV and sends signals via flex connectors (1 mm bending radius) PCB-flex-PCB-flex design to host HV RC-filters back-side temperature sensors for monitor / feedback

project completed boards received

designed in Bologna Casimiro Baldanza

Adapter board and MasterLogic V2

receives signals from SiPM, ships them to ALCOR includes **complex circuitry** to

- allow HV regulation
 - 0-5 V for each channel
 - 0-80 V for groups of 8 channels
- derivate signals before ALCOR
- switch from "regular mode" to "annealing mode"

project completed boards received

designed in Ferrara Roberto Malaguti

ALCOR board V2

2x ALCOR-v2 ASICs (2x 32 channels) future ALCOR-v3 will be 64 channels

project completed boards received

designed in Torino Marco Mignone

From design to assembly

dummy assembly tests with empty SiPM carriers to check mechanical tolerances and get confidence with new electronics (come in lab to see the real piece)

Air-cooled portable Peltier box

designed and realised by us based on Laird cooler assembly

Bologna lab

Bologna lab

airbox in Cosenza

• airbox installed in Cosenza

- after tests in Bologna
- shipped to Cosenza
- system installed on 13-14 April
- good teamwork
 - Bologna
 - Cosenza
 - Salerno

• Cosenza ready to contribute

- to SiPM characterisation
- in charge of proton-energy scan

• 3rd airbox to Salerno

- system will be installed in July
- increase SiPM test capacity

• Torino in line for 4th system

 for tests of ALCOR chip with SiPM at low T 2nd airbox unit being tested before shipping to Cosenza →3rd airbox system to be assembled in Salerno in July → Torino in line for the 4th system

Bologna lab

system installed on 13-14 April in Cosenza → ready to contribute to SiPM characterisation

30.3 .0

High-temperature annealing recovery

42

Repeated irradiation-annealing cycles

test reproducibility of repeated irradiation-annealing cycles

simulate a realistic experimental situation

- consistent irradiation damage
 - DCR increases by ~ 500 kHz (@ Vover = 4)
 - \circ after each shot of 10⁹ n_{eq}
- consistent residual damage
 - ~ 15 kHz (@ Vover = 4) of residual DCR
 - builds up after each irradiation-annealing

annealing cures same fraction of newly-produced damage

~ 97% for HPK S13360-3050 sensors

Automated multiple SiPM online self-annealing

New Hamamatsu SiPM prototypes

newly-developed Hamamatsu SiPM sensors

based on S13360 series few samples of 50 μm and 75 μm SPAD sensors

on paper they look VERY promising

- improved NUV sensitivity
- improved signal shape
- improved recharge time

mounted on EIC SiPM test boards we will characterise and test them in full irradiation, annealing, laser, ...

800

2022 test beam at CERN-PS

dRICH prototipe on PS beamline with SiPM-ALCOR box beamline shared with LAPPD test successful operation of SiPM irradiated (with protons up to 10¹⁰)

and <u>annealed</u> (in oven at 150 C)

8 GeV negative beam (aerogel rings)