Neutrino mass sensitivity with the Ptolemy demonstrator: approach 1

Angelo Nucciotti Physics Department, University of Milano-Bicocca INFN Sezione Milano-Bicocca

PTOLEMY meeting, Princeton 6-8 November 2023

- sensitivity estimate for "bare" Tritium spectrum (i.e. in vacuum decay)
- effect on sensitivity of Heisenberg ZPF in the initial state for free ³He⁺ decay
- TODO: sensitivity from analysis of end-points of bound ³He⁺ decays

PTOLEMY demonstrator neutrino mass statistical sensitivity / 1

Simulated tritium spectrum in PTOLEMY demonstrator for

- 1 µg of ³H (\approx 50 cm² at 100% graphene loading) \rightarrow **A**_{3H}=**370 MBq**
- 3 year measurement (t_{M})
- EMF selection: $\boldsymbol{E}_{\min} = \boldsymbol{q}_{e}(\boldsymbol{V}_{3H} \boldsymbol{V}_{TES}) \rightarrow \boldsymbol{Q}' = \boldsymbol{Q}_{3H} \boldsymbol{E}_{\min}$
- rate on TES microcal array (MCA) A'≈ЗА_{зн}(Q'/Q_{зн})^{3/2}
- pile-up probability $f_{pp} = A' \tau_R / n_{pix}$ (TES τ_R time resolution)
- for $Q'=30 \text{ eV} \rightarrow A'=2.3 \text{ c/s} \rightarrow f_{pp}=10^{-5} \text{ for } n_{pix}=1 \text{ and } \tau_{R}=1 \text{ } \mu\text{s}$

PTOLEMY demonstrator statistical sensitivity

estimated by frequentist approach

- $N'_{ev} = \eta A' t_{M}$
- pitch angle acceptance $\eta=1$ (i.e. $0 < \theta_{\beta} \le 180^{\circ}$)
- no background

A.Nucciotti, et al., Astropart.Phys. 34 (2010) 80–89; https://doi.org/10.1016/j.astropartphys.2010.05.004

PTOLEMY demonstrator neutrino mass statistical sensitivity / 2

PTOLEMY demonstrator statistical sensitivity estimated by frequentist approach

- pitch angle acceptance η for $\theta_{\beta}=$ 30°, 45°, 60°, 90°, 180°
- geometrical TES efficiency (coverage): 0.5
- $N'_{ev} = 0.5 \ \eta \ A' \ t_{M}$
- $f_{pp} = 0.5 \eta A' \tau_{R} / n_{pix}$
- Δ*E*_{FWHM}=0.1eV

B

θβ

Systematic uncertainty because of unknown Heisenberg ZPF broadending

- ZPF broadening with 0.17 eV $\leq \Delta E \leq 0.75$ eV (5 values in the interval)
- ZPF broadening in "experimental spectra" vs. broadening in fit "model"
- perfectly known TES resolution $\Delta E_{FWHM} = 0.1 eV$

•	pitch	angle	acceptance	η=1
---	-------	-------	------------	-----

Potential	Source	κ , [eV/Å ²]	$\lambda, [\text{Å}]$	$\Delta E, [eV]$
Chemisorption	[23]	2.15	0.16	0.60
	[21], GGA	4.62	0.13	0.73
	[21], vdW-DF	4.9	0.13	0.75
Physisorption	[24]	0.08	0.37	0.26
	[23]	0.09	0.34	0.28
	[21], GGA	0.18	0.29	0.33
	[21], vdW-DF	0.13	0.32	0.2
	[22], GGA	0.04	0.43	0.22
	[22], LDA	0.01	0.55	0.17
Migration	[26]	0.283	0.264	0.37

https://doi.org/10.1103/PhysRevD.104.116004

Systematic uncertainty because of unknown Heisenberg ZPF broadending

- ZPF broadening with 0.17 eV $\leq \Delta E \leq 0.75$ eV (5 values in the interval)
- ZPF broadening in "experimental spectra" vs. broadening in fit "model"
- perfectly known TES resolution $\Delta E_{FWHM} = 0.1 eV$
- pitch angle acceptance $\eta=1$

Potential	Source	κ , [eV/Å ²]	$\lambda, [Å]$	ΔE , [eV]
Chemisorption	[23]	2.15	0.16	0.60
	[21], GGA	4.62	0.13	0.73
	[21], vdW-DF	4.9	0.13	0.75
Physisorption	[24]	0.08	0.37	0.26
	[23]	0.09	0.34	0.28
	[21], GGA	0.18	0.29	0.33
	[21], vdW-DF	0.13	0.32	0.2
	[22], GGA	0.04	0.43	0.22
	[22], LDA	0.01	0.55	0.17
Migration	[26]	0.283	0.264	0.37

background due to bound state decays not included!

Systematic uncertainty because of unknown Heisenberg ZPF broadending

- ZPF broadening with 0.17 eV $\leq \Delta E \leq 0.75$ eV (5 values in the interval)
- complete ignorance
 - uncertain ZPF broadening in "experimental spectra", flat distributed in $[\Delta E(1-\alpha), \Delta E(1+\alpha)]$
 - fit "model" with only TES resolution
- perfectly known TES resolution $\Delta E_{FWHM} = 0.1 eV$
- pitch angle acceptance $\eta=1$

Potential	Source	κ , [eV/Å ²]	$\lambda, [\text{Å}]$	$\Delta E, [eV]$
Chemisorption	[23]	2.15	0.16	0.60
	[21], GGA	4.62	0.13	0.73
	[21], vdW-DF	4.9	0.13	0.75
Physisorption	[24]	0.08	0.37	0.26
	[23]	0.09	0.34	0.28
	[21], GGA	0.18	0.29	0.33
	[21], vdW-DF	0.13	0.32	0.2
	[22], GGA	0.04	0.43	0.22
	[22], LDA	0.01	0.55	0.17
Migration	[26]	0.283	0.264	0.37

https://doi.org/10.1103/PhysRevD.104.116004

Sensitivity estimates Including intial and final states

- Use complete composite spectrum with neutrino mass affecting all spectra end-points
- Inputs for simulation:
 - ZPF broadening in final free ³He⁺ decay known from theory
 - Resitdual theoretical uncertainties \rightarrow systematic uncertainties
 - known branching ratios between free and bound ³He⁺ decays
 - known end-points for final free and bound ³He⁺ decays
- Expected consequences
 - ZPF ΔE≈1 eV would limit statistical sensitivity
 - Background from higher end-point spectra would limit statistical sensitivity
 - Decay on final bound ³He⁺ in 1st excited has too low rate at end-point

