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TES Could Use (Very) Cold Source for Calibration

❖ Monochromatic electron source: crucial step for calibrating TES detectors


• But needs to work in cryogenic environment (without spoiling it)


• Most electron gun technologies based on heating
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Field Emission Through Quantum Tunneling

❖ Field emission from flat surfaces 
only for very intense electric fields


• E > 107 V/cm


• Impractical


❖ In the case of nanotubes:


• Tip-effect E field enhancement


• Large surface: large current


❖ Quantum effect: no heating
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Thermoionic Emission Field Emission

J = AE2 exp
−BΦ3/2

γE
γ = enhancement factor 

can be ~103-104

so emission can start 
with E < 103 V/mm
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TES Requirements: A Back-of-the-Envelope Calculation

❖ For PTOLEMY need electrons with E = 100 eV 


• So need to work at ∆V = 100 V


❖ Maximum rate for TES ~ 10 kHz


• Corresponds to a current Imax ~ 2 fA


❖ TES surface: 50×50 µm2, CNT surface ~ 1 cm2


• So this corresponds to current density Jmax = 2 fA / 50×50 µm2 = 80 pA / cm2


• Considering that electrons are not bunched              Aim for I ~ 1 pA with ∆V = 100 V
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Original idea 
by Alice
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The Setup Inside the ‘Hyperion’ Prototype
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Two Samples: As-Grown and Plasma-Etched
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Sample N1 
(Mild Etching)

As Grown 
(No Etching)

Fig. 2. Modifying the morphology of CNT forests via Ar/O2 plasma etching. Schematics of (a) plasma etching by excited Ar and O2 atoms and (b) CNT forests after exposure
different etching conditions: as-grown, light etching, modest etching, aggressive etching. (c)e(f) SEM images (tilted view) of plasma-etched CNT forest pillars. (g)e(j) SEM images of
enlarged areas (blue rectangles) from (c)e(f). (A colour version of this figure can be viewed online.)

Fig. 3. Effect of plasma power on crust removal and surface modification of the CNT forest. (a)e(d) AFM, (e)e(h) SEM and (i)e(l) optical images of top surface of CNT forests
(CVD grown via decoupled recipe), (a), (e), (i) as-grown, and etched using power of (b), (f), (j) 30 W, (c), (g), (k) 70 W, and (d), (h), (l) 100 W for 5 min (same Z-scale). (m) RMS
roughness values of plasma treated CNT forests according to plasma power. (n) SEM images of crust removal of CNT pillars after plasma treatment. Exposure time, gas composition
and flow rate were 5 min, Ar 8 sccm and O2 2 sccm respectively. (A colour version of this figure can be viewed online.)

S. Seo, S. Kim, S. Yamamoto et al. Carbon 180 (2021) 204e214

207

Plasma etching to remove 
non-aligned top (crust) layer
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Etched Samples Can Achieve I = 1 pA and ∆V = 100 V
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d = 2 mm 
∆V ~ 178 V

∆V that produces I = 1 pA

Expect 1 pA and ∆V = 100 V 
with d = 1.3 mm
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Before Summer: Using Whopper Gun @ IETI Cryostat (LNGS)
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Before Summer: Using Whopper Gun @ IETI Cryostat (LNGS)
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Nylon Spacers Caused Ohmic Leak

❖ Large Ohmic component


• R ~ 1014 Ω


• ×1000 at T ~ 1 K


❖ Compatible with nylon!


• Need other spacers
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New Design: Mozzarella in Carrozza (MiC) Gun

✓Sapphire spacers


✓ Improved mechanical stability
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-HV
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Electrical Contact with Wire Bonding on Nanotubes
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Installing MiC Gun Inside INRiM Cryostat
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3 K

3 K

30 mK

Can reach 30 mK 
in only 18 hours!
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Fully Automatized Data Acquisition with LabView
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Stable Emission at 2.8 K
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❖ No Ohmic leak!


• Sapphire doing its job


❖ Return sweep preferable


❖ Anode current: less noise

• σ(anode) ~ 0.04 pA

• σ(drain) ~ 0.4 pA


❖ 1 pA @ 210 V (d = 1.5 mm)


• 1 pA @ 70 V (d = 0.5 mm) ?
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Next Steps

❖ Fully characterize field emission at 2.8 K


• d = 0.5, 1.0, 1.5 mm


• Measure CNTs with different etchings


❖ Move setup to 30 mK plate


• Repeat characterization


• Couple to TES


• Measure electrons with TES
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O(1) month

O(6) months

This design can be 
tested with MCPs first
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Conclusions

❖ Studying CNT field emission as possible cold electron source for TES calibration


• Need I ~ 1 pA and Ee = 100 eV


• Need to operate at cryo temperatures


❖ New ‘mozzarella in carrozza’ CNT gun design, significant improvement wrt Whopper


• Sapphire spacers have eliminated Ohmic leak


❖ First measurements in INRiM cryostat: stable emission at 2.7 K, σ(I) ~ 0.04 pA


• Fully automatized data acquisition


• Measuring 1 pA @ 210 V for d = 1.5 mm             should imply 1 pA @ ~70 V for d = 0.5 mm


• Target in sight: expect to have results before end of the year
16


