Carbon Nanotubes as Cold Electron Source

Francesco Pandolfi

INFN Rome

Carlo Pepe, Mauro Rajteri

INRiM

Alice Apponi, Alessandro Ruocco Roma Tre

Istituto Nazionale di Fisica Nucleare

TES Could Use (Very) Cold Source for Calibration

- Monochromatic electron source: crucial step for calibrating TES detectors *
 - But needs to work in cryogenic environment (without spoiling it)
 - Most electron gun technologies based on heating

Francesco and Carlo

-	6
۰.	Į
_	-

Field Emission Through Quantum Tunneling

- Field emission from flat surfaces * only for very intense electric fields
 - E > 10⁷ V/cm
 - Impractical
- In the case of nanotubes: *
 - **Tip-effect** E field enhancement
 - Large **surface**: large current
- Quantum effect: no heating *

PTOLEMY Princeton Meeting, 06.11.23

so emission can start with $E < 10^3 V/mm$

TES Requirements: A Back-of-the-Envelope Calculation

- For PTOLEMY need electrons with E = 100 eV *
 - So need to work at $\Delta V = 100 V$
- Maximum rate for TES ~ 10 kHz *
 - Corresponds to a current Imax ~ 2 fA
- TES surface: 50×50 µm², CNT surface ~ 1 cm²
 - So this corresponds to current density $J_{max} = 2 \text{ fA} / 50 \times 50 \mu m^2 = 80 \text{ pA} / \text{ cm}^2$

Francesco and Carlo

• Considering that electrons are not bunched \rightarrow Aim for I ~ 1 pA with $\Delta V = 100 V$

The Setup Inside the 'Hyperion' Prototype

Two Samples: As-Grown and Plasma-Etched

Francesco and Carlo

As Grown

Sample N1 (Mild Etching)

Etched Samples Can Achieve I = 1 pA and $\Delta V = 100 V$

Etched Samples Can Achieve I = 1 pA and $\Delta V = 100 V$

Before Summer: Using Whopper Gun @ IETI Cryostat (LNGS)

Before Summer: Using Whopper Gun @ IETI Cryostat (LNGS)

Nylon Spacers Caused Ohmic Leak

Francesco and Carlo

- Large Ohmic component *
 - R ~ 10¹⁴ Ω
 - ×1000 at T ~ 1 K
- **Compatible** with nylon! *
 - Need other spacers

New Design: Mozzarella in Carrozza (MiC) Gun

Francesco and Carlo

✓ Sapphire spacers

✓ **Improved** mechanical stability

PTOLEMY Princeton Meeting, 06.11.23

Electrical Contact with Wire Bonding on Nanotubes

Francesco and Carlo

Installing MiC Gun Inside INRiM Cryostat

Francesco and Carlo

PTOLEMY Princeton Meeting, 06.11.23

Fully Automatized Data Acquisition with LabView

K6487 In	nitialize	IV curve parameter	Current vs Volt 1-
VISA resource name	A		0.9
GPIB0::22::INSTR	Auto Reset 🚽 ON	CNT	0.8-
Voltage Source Range		Anode	0.7-
500 V		Number of points	0.7
·		10	0.6-
Current Limit		Start	0.5-
V 25 UA		v v	0.4
Enable Voltage Source be	efore measurement	Stop	0.3 -
Disable		0 V	0.2-
Voltage Level Before mea	surement	Delay before	<i>⋧</i> 0.1
	surement	each measurement	o nt(p/
V		Buffer data	
Delay Time before IV cu	rve start	20	0 -0.1
∑ 1 s		v	-0.2
<u>.</u>			-0.3-
	-0.4 -		
Voltage	Mean	Standard deviation	-0.5-
0 V	0 p.	A 0 pA	-0.6-
			-0.7
	KC 407		-0.8
	K6487 CIO	se	-0.9
Voltage Source ON Voltage Level after IV Curve			1
Disable	<u>⊼</u> 0	V	-1

Francesco and Carlo

PTOLEMY Princeton Meeting, 06.11.23

Stable Emission at 2.8 K

- No Ohmic leak!
 - Sapphire doing its job
- Return sweep preferable
- Anode current: less noise
 - σ(anode) ~ 0.04 pA
 - σ(drain) ~ 0.4 pA
 - 1 pA @ 210 V (d = 1.5 mm)
 - 1 pA @ 70 V (d = 0.5 mm) ?

) m) ?

>

Next Steps

Fully characterize field emission at 2.8 K *

- d = 0.5, 1.0, 1.5 mm
- Measure CNTs with different etchings
- Move setup to 30 mK plate *
 - Repeat characterization
 - Couple to TES
 - Measure electrons with TES

Francesco and Carlo

Conclusions

Studying CNT field emission as possible cold electron source for TES calibration *

- Need I ~ 1 pA and $E_e = 100 \text{ eV}$
- Need to operate at cryo temperatures

*

- New 'mozzarella in carrozza' CNT gun design, significant **improvement** wrt Whopper • Sapphire spacers have **eliminated** Ohmic leak
- First measurements in INRiM cryostat: **stable** emission at 2.7 K, $\sigma(I) \sim 0.04$ pA *
 - Fully automatized data acquisition

 - Target in sight: expect to have results before end of the year

Francesco and Carlo

PTOLEMY Princeton Meeting, 06.11.23

• Measuring 1 pA @ 210 V for d = 1.5 mm $\rightarrow \rightarrow$ should imply 1 pA @ \sim 70 V for d = 0.5 mm

