Challenges and ideas for the absorption of the relic neutrino

PTOLEMY collaboration meeting 6-8 November

Overview

• **Graphene** and relic neutrinos don't seem to get along

• How would the electron spectra vary if we changed the **substrate**?

• First results from **fullerenes**

Relic neutrinos

Why is it important to detect relic neutrinos?

• Decoupled from ordinary matter just **1** second after the Big Bang

They carry invaluable information about the early Universe

Relic neutrinos

Why is it important to detect relic neutrinos?

• Decoupled from ordinary matter just **1** second after the Big Bang

They carry invaluable information about the early Universe

Why is it so difficult?

- 1) Mainly interact through weak interactions
- 2) Very **small masses**
- 3) Kinetic energies around 10^{-4} to 10^{-6} eV

Relic neutrinos

Why is it important to detect relic neutrinos?

• Decoupled from ordinary matter just **1** second after the Big Bang

They carry invaluable information about the early Universe

Why is it so difficult?

- 1) Mainly interact through weak interactions
- 2) Very **small masses**
- 3) Kinetic energies around 10^{-4} to 10^{-6} eV

[Weinberg, 1962 Phys. Rev. 128 1457]

CNB detection in vacuum

 $T \longrightarrow {}^{3}\text{He}^{+} + e^{-} + \bar{\nu}_{e}$ $\nu_{e} + T \longrightarrow {}^{3}\text{He}^{+} + e^{-}$

Neutríno absorption

CNB detection in vacuum

Neutrino absorption

CNB detection in vacuum

T \longrightarrow ³He⁺ + e⁻ + $\bar{\nu}_e$ ν_e + T \longrightarrow ³He⁺ + e⁻

> Neutrino absorption

- What do we need?
- 1) Enough **events** per year
- 2) Good energy resolution

PTOLEMY with graphene

- What does graphene bring on the table? (potentially)
 - 1. **100 g** of tritium
 - 2. Energy resolution of **50 meV**

PTOLEMY with graphene

- What does graphene bring on the table? (potentially)
 - 1. **100 g** of tritium
 - 2. Energy resolution of **50 meV**
- How to describe tritium **initial state**?

$$\Psi_{T}(\vec{x}) \propto e^{-\vec{x}^{2}/2\lambda^{2}}$$

$$Localization$$

$$\lambda \simeq 0.08 \text{ Å}$$
[PTOLEMY - PRD 2022, 2203.11228]

• How good is graphene to **detect CNB**?

• How good is graphene to **detect CNB**?

• How good is graphene to **detect CNB**?

• What about final excited bound states?

Need to change substrate

• What would change if we used **another substrate**?

Tritium would be localized differently

Need to change substrate

• What would change if we used **another substrate**?

Tritium would be localized differently

• Different substrate

 $\leftarrow \rightarrow$

Different value of λ

Need to change substrate

Tritium would be

• What would change if we used **another substrate**?

• Let's see how electron spectra change varying λ

• Distorsion on the rates as λ is decreased

• Distorsion on the rates as λ is decreased

• Distorsion on the rates as λ is decreased

 10^{19} CNB, final free ${}^{3}\text{He}^{+} \lambda \rightarrow 30\lambda$ β , final free ³He⁺ $\lambda \rightarrow 30\lambda$ • What would happen CNB, final free ${}^{3}\text{He}^{+} \lambda \rightarrow 2\lambda$ --- β , final free ³He⁺ $\lambda \rightarrow 2\lambda$ 10^{17} CNB, final free ${}^{3}\text{He}^{+} \lambda \rightarrow \lambda$ ---- β , final free ³He⁺ $\lambda \rightarrow \lambda$ if we increased λ ? CNB, final free ³He⁺ $\lambda \rightarrow \lambda/2$ ---- β , final free ³He⁺ $\lambda \rightarrow \lambda/2$ 10^{15} 10^{13} $dR/dK_{\beta} ~(\mathrm{eV}^{-1}\mathrm{yr}^{-1})$ 10^{11} 10^{9} 10^{7} CNB peak 10^{5} emerges 10^{3} Quantum uncertainty 10^{1} decreases 10^{-1} 10^{-3} -10-8-6-4-2-12 $K_{\beta} - K_{\beta}^0$

Strategy n.2: increase λ

• How to make CNB detection possible?

Fullerenes

• We studied the C_{60} molecule

[Jalife et al., Chem. Sci., 2020, 11, 6642-6652]

Fullerenes

• We studied the C_{60} molecule

[Jalife et al., Chem. Sci., 2020, 11, 6642-6652]

• Assumptions:

1) Spherical symmetry $V(r) = a_6 r^6 + a_8 r^8$

2) Binding energy of 1 eV

Effects of C_{60}

• Final **bound** ³He⁺: events are even more suppressed: $\lambda p_{\beta} \simeq 31$

- Final **bound** ³He⁺: events are even more suppressed: $\lambda p_{\beta} \simeq 31$
- Final **free** ³He⁺: does the CNB peak emerge from background of beta decay events?

Results from C_{60}

Andrea Casale

Princeton, 6-8 November 2023

Results from C_{60}

CNB peak becomes more visible as m_{ν} increases...

Results from C_{60}

CNB peak becomes more visible as m_{ν} increases...

... but emerges only for $m_{\nu} \gtrsim 0.6 \text{ eV}$

What if we expanded C_{60} ?

• C_{60} doesn't delocalize tritium enough

What if we were able to increase its radius?

What if we expanded C_{60} ?

• C_{60} doesn't delocalize tritium enough

What if we were able to increase its radius?

[Tozzini, Menichetti - Private communication]

In the lab, this could be achieved by flattening the potential hill

Quantum uncertainty decreases with increasing radius:

Quantum uncertainty decreases with increasing radius:

. Green curves become steeper: peak more visible

Quantum uncertainty decreases with increasing radius:

1. Green curves become steeper: peak more visible

2. CNB peak narrows

Quantum uncertainty decreases with increasing radius:

1. Green curves become steeper: peak more visible

2. CNB peak narrows

Only partially visible

Other ideas?

Bound in the other directions

Andrea Casale

Princeton, 6-8 November 2023

 Neither graphene nor the C₆₀ molecule seem → to be ideal candidates to observe relic neutrinos

Further research is needed to determine the optimal substrate for the intended goal

 Neither graphene nor the C₆₀ molecule seem → to be ideal candidates to observe relic neutrinos

Further research is needed to determine the optimal substrate for the intended goal

• Two possible courses of action:

1) Extreme localization: CNB peak (bound ³He⁺) becomes visible (we need $\lambda \simeq O(0.01 \text{ Å})$)

 Neither graphene nor the C₆₀ molecule seem → to be ideal candidates to observe relic neutrinos

Further research is needed to determine the optimal substrate for the intended goal

• Two possible courses of action:

1) Extreme localization: CNB peak (bound ³He⁺) becomes visible (we need $\lambda \simeq O(0.01 \text{ Å})$)

2) Extreme delocalization: CNB peak (free ³He⁺) emerges from beta decay events

 Neither graphene nor the C₆₀ molecule seem → to be ideal candidates to observe relic neutrinos

Further research is needed to determine the optimal substrate for the intended goal

• Two possible courses of action:

Extreme localization:
 CNB peak (bound ³He⁺) becomes visible (we need λ ≃ Ø(0.01 Å))

2) Extreme delocalization: CNB peak (free ³He⁺) emerges from beta decay events

Thank you for your attention!