EOB@Work23: 16 October 2023

Measuring eccentricity in binary black hole mergers

Alice Bonino, Patricia Schmidt, Geraint Pratten

University of Birmingham

Eccentricity estimator

• Eccentricity estimator: $e_{gw}(t) = \cos(\Psi/3) - \sqrt{3}\sin(\Psi/3)$ [from GW frequency] $\Psi = \arctan\left(\frac{1-e_f^2}{2e_f}\right)$ $e_f(t) = \frac{\sqrt{f_{per}} - \sqrt{f_{ap}}}{\sqrt{f_{per}} + \sqrt{f_{ap}}}$

arXiv:2209.03390

- Average frequency: $\bar{f}(t) = \frac{1}{2}(f_{per}(t) + f_{ap}(t))$ (can use other definitions, important is to be consistent)
- Impact of data conditioning and numerical errors: junk radiation, waveform extraction (dependence on the Fixed Frequency Integration cut-off), extrapolation, noise, where the estimator breaks down (how many peaks we need)...

NR vs TEOBResumS: TEOB initial conditions

- We calculate the eccentricity from NR simulations (\bar{f}_0, e_0) corresponding to average frequency and eccentricity at first apastron $(t_0^{NR} = t_{first \, ap}^{NR})$
- Generate TEOB waveforms using as initial conditions $(ar{f}_0,e_0)$
- Read off the initial times (corresponding to the times of first apastron) of NR and TEOB: the initial times do not correspond!
- Take the difference between the two times $\Delta t^{\rm NRTEOB} = t_0^{\rm NR} t_0^{\rm TEOB}$
- From the eccentricity curve read off average frequency and eccentricity at $t_{t_0+\Delta t}^{NR} = t_0^{NR} + \Delta t^{NRTEOB}$ Re-generate TEOB waveforms using as initial conditions the average frequency and the eccentricity at $t_{t_0+\Delta t}^{NR}$ i.e. $(\bar{f}_0^{TEOB}, e_0^{TEOB})$. The initial time is now ~ t_0^{NR} :

The NR initial conditions and the TEOB initial conditions correspond now to the same reference time!

 $\rightarrow \quad \text{Perform a phase shift in order to have} \phi^{\text{TEOB}}(t_0^{\text{TEOB}}) = \phi^{\text{NR}}(t_0^{\text{TEOB}}) \quad \text{where } t_0^{\text{TEOB}} \simeq t_0^{\text{NR}}$ (this is equivalent to put both phases to zero at the time of first apastron)

NR vs TEOBResumS: Preliminary results

Einstein Toolkit simulations

$$q = 1, e_0 = 0.2, a_1 = a_2 = 0.5$$

$$q = 1, e_0 = 0.1, a_1 = a_2 = 0.5$$

4

NR vs TEOBResumS: Preliminary results

Einstein Toolkit simulations

$$q = 4, e_0 = 0.05, a_1 = a_2 = 0$$

 $q = 1, e_0 = 0.05, a_1 = a_2 = 0$

NR vs TEOBResumS-Dali: Preliminary results

SXS simulations

SXS_BBH_1359

SXS_BBH_1360

Additional plots

Preliminary table of ETK simulations

Simulation			DALI		$\Delta \phi^{ m EOBNR}_{22 m merger}$
ID	$\bar{f}_{ m NR}$	$e_{ m NR}$	$ar{f}_{ ext{DALI}}$	e_{DALI}	
$\mathrm{BBH_q1_e0.1_a0.5_a0.5}$	0.00807595	0.0876158	0.00811859	0.0873097	0.057
$BBH_q1_e0.05_N80$	0.0076203	0.0510486	0.0076187	0.0510577	0.968
$BBH_q1_e1_N80_v2$	0.00853042	0.0980399	0.00851807	0.0981181	0.872
$BBH_q1_e0.1_a+0.5_a-0.5$	0.00853016	0.0993008	0.00853016	0.0993008	0.933
$BBH_q1_e0.2_a0_a0$	0.0113294	0.186742	0.0111475	0.192398	0.757
$BBH_q1_e0.2_a0.5_a0.5$	0.00987994	0.170253	0.00998431	0.168399	0.014
$BBH_q1_e0.2_a+0.5_a-0.5$	0.0113196	0.1871	0.0111526	0.192687	0.582
$BBH_q1_e0.1_a-0.5_a-0.5$	0.00949267	0.116386	0.00937812	0.119773	0.552
$BBH_q1_e0.2_a-0.5_a-0.5$	N/A	N/A	N/A	N/A	N/A
$BBH_q1_e3_N80$	N/A	N/A	N/A	N/A	N/A
$BBH_q2_e0.05_a0.5_a0.5$ (psi4)	0.00738382	0.0460373	0.00733199	0.0462486	-0.349
$BBH_q2_e0.05_a-0.5_a-0.5$	0.00799565	0.0613589	0.00794926	0.0622875	0.377
$BBH_q2_e0.1_a0_a0$	0.00844699	0.10109	0.00845138	0.101055	0.485
$\rm BBH_q2_e0.1_a0.5_a0.5$	0.00801989	0.0871244	0.00804491	0.0869572	0.442
$BBH_q2_e0.1_a-0.5_a-0.5$	0.00936667	0.176516	0.00926028	0.121797	0.296
$q4_e0p05_D12p39$ (second apastron)	0.00802277	0.05008	0.00799697	0.0502306	-0.032
$q4_e0p05_D12p39$ (first apastron)	0.00753472	0.0541705	0.00752044	0.054268	0.119
$q6_a1_0p0_a2_0p0_e_0p1_D12p83$	0.00781405	0.105506	0.00777654	0.105947	0.190
$BBH_q3_e1_N80$	0.00834383	0.102726	0.00829156	0.103095	0.190
$BBH_q3_e3_N80$	N/A	N/A	N/A	N/A	N/A
$q2_e0p05_a1_0p0$	0.00791276	0.053303	0.00793732	0.0531424	0.527
$q3_a1_0p0_a2_0p0_e0p05_D12p379_vf (first apastron)$	0.00757658	0.0547304	0.00756841	0.0546278	0.722
$q3_a1_0p0_a2_0p0_e0p05_D12p379_vf$ (second apastron)	0.00817619	0.0499211	0.00814253	0.0501046	0.655
$q3_a1_0p5_a2_0p5_e0p05_D12p379_vf$	0.00741632	0.0477771	0.00738953	0.0479334	-0.356
$q3_a1_m0p5_a2_m0p5_e0p05_D12p379_vf$	0.00800259	0.0617299	0.00797244	0.0620075	0.618