NR-EOB comparison

EOB@Work 2023: Fall Meeting

Torino, October 16, 2023

.

1

J. Trenado, T. Andrade, A. Climent

Comparison EOB - ICC/RIT/MAYA/SXS

- example plots of very different waveform
- plot of initial data in (E0,J0) plane, superpose NR pts on EOB prediction plots
- encounter histogram plot (see Nagar+ 2021)
- example plot with EOB potential and different orbits
- mismatch summary plots for all data (eccentric, dynamical encounter, scattering from BCN, RIT, SXS etc)
- table of scattering angles (Nagar-Hopper references)

ICC catalogue

223 simulations

- E0_ADM range: 0.9951 0.9998
- J0_ADM: 0.6169 1.1548
- Mass ratio: 1 1.95
- Chi: -0.5 0.5
- Initial separation: 40M

• Three general sets

q	χ	# sims
1	0	37
1	-0.5 - 0.5	91
1.25 – 1.95	0	95

100

50

0 -

-0.4

-0.2

RIT catalogue

457 selected simulations

- E0_ADM range: 0.9790 0.9991
- J0_ADM: -0.5032 1.3259
- Mass ratio: 1 32
- Chi: -0.8 0.8
- Initial separation:
 11.33M 24.75M

0.0

0.5

100

0

-0.5

2nd Maya Catalogue

- Sep 2023 \rightarrow Second Maya Catalogue
 - Total: 181 waveforms
 - 55 with high mass ratio q>=4
 - 48 precessing
 - 92 eccentric (e>0.01)

0.5

0.0

P

92 eccentric

- 80 waveforms
 - Mass ratio 1 <= q <= 4 (by steps of 1)
 - Spins $a1 = a2 = \{0, 0.4\}$ aligned with J
 - o 0.01 < e < 0.1
- 5 waveforms
 - Mass ratio q = 1
 - Eccentricity up to e = 0.6
- 7 waveforms
 - Eccentricity and precession

e = 0.004

92 eccentric (e>0.01)

- 80 waveforms
 - Mass ratio 1 <= q <= 4 (by steps of 1)
 - Spins $a1 = a2 = \{0, 0.4\}$ aligned with J
 - 0 0.01 < e < 0.1
- 5 waveforms
 - Mass ratio q = 1
 - Eccentricity (4 with e < 0.3 and 1 with e=0.6)
- 7 waveforms
 - Eccentricity and precession e<0.2

SXS Catalogue

- Sep 2019 \rightarrow SXS Catalogue (arXiv:1904.04831v2)
 - Total: 2018 waveforms
 - e_{max} = 0.14

ICC Catalogue

Exemples of differents waveforms ICC: q=1; spin=0

Exemples of differents waveforms ICC: q=1; spin≠0

Exemples of differents waveforms ICC: q≠1; spin=0

Encounters ICC-EOB. Algorithm.

Three different analysis

- 1. Counting encounters using abs(psi4) in NR and abs(strain) in EOB
 - Scipy find_peaks with min. distance between peaks: 40M
- 2. Counting encounters using abs(strain) in NR and abs(strain) in EOB
 - Integration in NR using FFI with constant f0=0.0023
 - Scipy find_peaks with min. height=0.1 and min. distance between peaks: 40M and prominence=0.03
- 3. Countins encounters using abs(strain) in NR and worb in EOB
 - Integration in NR using FFI with constant f0=0.0023
 - For NR: Scipy find_peaks with min. height=0.1 and min. distance between peaks: 40M and prominence=0.03
 - For EOB: find_peaks through derivation of worb

Encounters ICC-EOB. Example of analysis

Encounters ICC-EOB. Totals

Algorithm	Set	Coincidence per set (%)	Total Coincidence (%)	
NR(Psi4) - EOB(h)	q=1 χ=0	94,44%	92,31%	
	q=1 χ≠0	94,51%		
	q≠1 χ=0	89,36%		
NR(Psi4) - EOB(worb)	q=1 χ=0	94,59%	93,72%	
	q=1 χ≠0	95,60%		
	q≠1 χ=0	91,58%		
NR(h) - EOB(h)	q=1 χ=0	91,89%	87,89%	
	q=1 χ≠0	90,11%		
	q≠1 χ=0	84,21%		
NR(h) - EOB(worb)	q=1 χ=0	91,89%		
	q=1 χ≠0	92,31%	92,31% 91,48% 90,53%	
	q≠1 χ=0	90,53%		

Encounters (E0, J0) computed with abs(strain) for NR and EOB

Encounters (E0, J0) computed with abs(strain) for NR and EOB

Mismatches.

ò

Mismatches

Mismatches. Cuts in q and chi

Scattering angles

RIT Catalogue

Exemples of differents waveforms RIT:

Ecc: $0.5 \rightarrow 0.6$

Exemples of differents waveforms RIT:

Ecc: 0.7 → 0.8

Exemples of differents waveforms RIT:

Ecc: 0.9 → 0.99

- real

400

imag

abs

Encounters RIT-EOB. Algorithm.

• Two different analysis

Only considering signals with D=24.75M

- 1. Counting encounters using abs(strain) in NR and abs(strain) in EOB
 - Integration in NR using FFI with constant f0=0.0023
 - Scipy find_peaks with min. height=0.3 and min. distance between peaks: 40M
- 2. Countins encounters using abs(strain) in NR and worb in EOB
 - Integration in NR using FFI with constant f0=0.0023
 - For NR: Scipy find_peaks with min. height=0.3 and min. distance between peaks: 40M
 - For EOB: find_peaks through derivation of worb

Encounters RIT-EOB. Totals

Algorithm	Set	# sims	Coincidence per set (%)	Total Coincidence (%)
NR(Psi4) - EOB(worb)	$0.5 \le ecc < 0.6$	76	82,89%	
	$0.6 \le ecc < 0.7$	105	72,38%	
	$0.7 \le ecc < 0.8$	42	78,57%	76,60%
	0.8 ≤ ecc < 0.9	42	73,81%	
	0.9 ≤ ecc < 1.0	163	52,76%	
NR(h) - EOB(worb)	0.5 ≤ ecc < 0.6	76	93,42% (<u>1)</u>	
	$0.6 \le ecc < 0.7$	105	95,24%	
	$0.7 \le ecc < 0.8$	42	95,24%	93,96%
	$0.8 \le ecc < 0.9$	42	90,48%	
	$0.9 \le ecc \le 1.0$	163	80,37%	
NR(h) - EOB(worb)	$0.5 \le ecc < 0.6$	76	89,47%	
	$0.6 \le ecc < 0.7$	105	91,43%	
	$0.7 \le ecc < 0.8$	42	90,48%	89,81%
	$0.8 \le ecc < 0.9$	42	85,71%	
	$0.9 \le ecc \le 1.0$	163	69,33%	

(1) See examples in next slides (2) For $0.5 \le ecc < 0.9$, D=25M

ExtrapPsi4_RIT-eBBH-1830-n100-ecc

ExtrapPsi4_RIT-eBBH-1845-n100-ecc

ExtrapPsi4_RIT-eBBH-1887-n100-ecc

ExtrapPsi4_RIT-eBBH-1717-n100-ecc

ExtrapPsi4_RIT-eBBH-1773-n100-ecc

Encounters (E0, J0) RIT, computed with abs(strain) for NR and d(worb) for EOB. Data: 0.5>ecc>0.9

Encounters (E0, J0) RIT, computed with abs(strain) for NR and d(worb) for EOB. Data: 0.5>ecc>0.9

Encounters (E0, J0) computed with abs(strain) for NR and and d(worb) for EOB.

Mismatches.

Mismatches

Mismatches. Cuts in q, chi and ecc

BACK-UP SLIDES

Encounters (E0, J0) ICC, computed with abs(strain) for NR and d(worb) for EOB

Encounters (E0, J0) ICC, computed with abs(strain) for NR and d(worb) for EOB

Encounters (E0, J0) ICC, computed with abs(strain) for NR and d(worb) for EOB

Encounters (E0, J0) RIT, computed with abs(strain) for NR and d(worb) for EOB

4/

Encounters (E0, J0) RIT, computed with abs(strain) for NR and d(worb) for EOB

