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Recap: the Hamiltonian of a spinning particle

ĤK ≡
HK

μ
= AK [1 + p2

φ(uK
c )2 +

AK

DK
p2

r ] + (GK
S ̂a + GK

S*
ã*) pφ

Particle  mass  and spin  

Kerr black hole  mass  and spin  


→ μ S*
→ M S

Orbital and SS part 

AK = (1 − 2uK
c ) 1 + 2uK

c

1 + 2u

DK =
(uK

c )2

u2

SO part 

uK
c ≡ 1/rK

c , (rK
c )2 ≡ r2 + ̂a2 (1 +

2
r )̂a ≡ S/M2, ã* ≡ S*/μM

GK
S = 2 u (uK

c )2

GK
S*

= (uK
c )2{ AK

QK [1 − (uK
c )′ AK

(uK
c )2 DK ]

+ (AK)′ 

2uK
c (1 + QK) DK }

≡

QK



Recap: the Hamiltonian of TEOBResumS
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Ĥeff ≡ A [1 + p2
φu2

c + 2ν(4 − 3ν)p4
r*

u2
c ] + p2

r*
+ (GS

̂S + GS*
̂S*) pφ

ĤEOB ≡
1
ν

1 + 2ν (Ĥeff − 1)

̂S ≡
S1 + S2

M2
, ̂S* ≡

1
M2 ( m2

m1
S1 +

m1

m2
S2), ã0 ≡ ̂S + ̂S*

Spin-aligned binary system  masses  and spins   → mi Si, i = 1,2

uc ≡ 1/rc, r2
c ≡ r2 + ã2

0 (1 +
2
r ) +

δa2

r
Orbital and SS part 

A = P1
5 [A5PN

orb ](uc)
1 + 2uc

1 + 2u

M = m1 + m2,
μ = m1m2/M,
ν ≡ μ/M

 NLO spin-spin term →
pr*

≡ A /D1/2 pr

D = P0
3 [D3PN

orb ](uc)
u2

c

u2

SO part 

GS = G0
S ĜS, G0

S ≡ 2uu2
c , ĜS =

1

TPN [(GS /G0
S)−1]

GS*
= G0

S*
ĜS*

, G0
S*

≡
3
2

u3
c , ĜS*

=
1

TPN [(GS*
/G0

S*)
−1]



Recap: more on the SO term in TEOBResumS
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We have therefore two possible directions of improvement:  
• Change the spin gauge in which the PN expressions of  and are  obtained 
• Include the 

GS GS*

N3LO

GS = G0
S ĜS GS*

= G0
S*

ĜS*

Prefactors:

G0
S ≡ 2uu2

c = GK
S (uK

c → uc) however G0
S*

≡
3
2

u3
c , GK

S*
=

3
2

uK
c + 𝒪(1/c2)

We would like but it is impossible in the 

“usual” DJS spin gauge

G0
S*

≡ GK
S*

(uK
c → uc, AK → A, DK → D)

Inverse-resummed PN residuals:

ĜS =
1

TPN [(GS /G0
S)−1]

, ĜS*
=

1

TPN [(GS*
/G0

S*)
−1]

They are both built from PN-expanded results at  but we have now enough 
analytical information to compute the 

N2LO
N3LO



Computation outline
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Generic ansatz for the -accurate expressions of  N3LO (GS, GS*
)

4.5PN effective Hamiltonian with the ansatz in the SO part 

Effective ansatz-dependent scattering angle χeff

-accurate expressions of  in gauge-unfixed formN3LO (GS, GS*
)

Gauge fixing, such that G0
S*

≡ GK
S*

(uK
c → uc, AK → A, DK → D)

-accurate expressions of   in the spin gauge we wantN3LO (GS, GS*
)

Equivalence of the scattering angle,  χeff = χPM



Source of dynamical information
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4PM scattering angle expanded through the third subleading PN order:

ε ≡ Ĥ2
eff − 1 ∼ 1/c2γ ≡ Ĥeff Γ ≡ 1 + 2ν (Ĥeff − 1) GM

b ε
≡

1
pφ

ab = ̂S, at = ̂S*

χPM

Γ
 [Antonelli et al. 2020]

̂S χSO,S
PM

̂S* χSO,S*
PM



Starting ansatz and corresponding Hamiltonian
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 has the same structures, with  and  Ggen
S*

2 → 3/2 gNmLO
n → gNmLO

*n

Ĥgen
eff ≡ A4PN (1 + p2

φu2 +
A4PN

D4PN
p2

r + Q4PN) + (Ggen
S

̂S + Ggen
S*

̂S*) pφ

Corresponding 4.5PN-accurate effective Hamiltonian:

We consider the general ansatz:

A4PN = 1 − 2u + 2νu3 + ν ( 94
3

−
41π2

32 ) u4 + (a5,c +
64ν
5

log(u)) u5,

D4PN = 1 − 6νu2 + 2ν(−26 + 3ν)u3 + (d4,c −
592ν
15

log(u)) u4,

Q4PN = p4
r (q43 u3 + 2ν(4 − 3ν)u2) + q62 u2p6

r

(  is the dimensionless total momentum,   )p p2 = p2
r + p2

φu2



The effective scattering angle
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χeff(ε, pφ, gNmLO
n , gNmLO

*n ) ≡ − π − 2∫
umax

0

du
u2

∂
∂pφ

pr(ε, pφ, u, gNmLO
n , gNmLO

*n )

Inverse of  i.e. the largest real root of    rmin pr = 0

 Obtained by inverting perturbatively ε = (Ĥgen
eff )2 − 1To properly solve the integral:

u →
ε

pφ
x, umax → xmax = 1 + 𝒪(G/c2)

pφ →
pφ

Γ
+

Γ − 1
2νc2 ( ̂S + ̂S* −

̂S − ̂S*

Γ ), Γ = 1 + 2ν ( 1 + ε − 1)

• Change of integration variable

• From “canonical” to “covariant” angular momentum

• Expansion of the integrand in  up to  and in  up to    1/pφ 1/p4
φ 1/c 1/c8

PM expansion PN expansion

• Hadamard partie finie ∫
1+𝒪(G/c2)

0
dx → Pf∫

1

0
dx [Damour-Schafer, 1988]



The effective scattering angle
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Pf∫
1

0
dx (1 − x2)−1/2−n xm →

 is then given by a series of integrals of the type:χeff(ε, pφ, gNmLO
n , gNmLO

*n )

 of an Euler Beta function Pf (x → y)

We can evaluate them by analytical continuation:

Pf∫
1

0
dx (1 − x2)−1/2−n xm = lim

z→0 ∫
1

0
dx (1 − x2)−1/2+z−n xm

The resulting  has a three-component structure like :χeff χPM

χeff(ε, pφ, gNmLO
n , gNmLO

*n ) = χorb
eff (ε, pφ) + ̂S χSO,S

eff (ε, pφ, gNmLO
n ) + ̂S* χSO,S*

eff (ε, pφ, gNmLO
*n )

Moreover  coincide with the non-spinning part of  χorb
eff χPM



-accurate  in gauge-unfixed formN3LO (GS, GS*
)
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χSO,S
eff (ε, pφ, gNmLO

n ) = χSO,S
PM (ε, pφ)

We can now impose the following equivalences:

9 -dependent relations

between the coefficients


ν

gNmLO
n

χSO,S*
eff (ε, pφ, gNmLO

*n ) = χSO,S*
PM (ε, pφ)

9 -dependent relations

between the coefficients


ν

gNmLO
*n

Ggen
S

-accurate  with 
10 residual gauge 
coefficients 

N3LO GS -accurate  with 
10 residual gauge 
coefficients 

N3LO GS* Ggen
S*



Coefficient conditions for  GS
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NLO

N2LO

N3LO



Coefficient conditions for  GS*
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NLO

N2LO

N3LO



Fixing the spin gauge: DJS gauge
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 in the DJS gauge are obtained by setting to zero each term proportional to  
in the corresponding gauge-unfixed expressions
(GS, GS*

) pφ

All the remaining coefficients are fixed and we find:

Corresponds to the result of [Antonelli et al. 2020]



Fixing the spin gauge: SP gauge
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We now want to compute  in the a spin gauge where also  reduces to its 
spinning particle analog in the limit , at each PN order

(GS, GS*
) GS*

ν → 0
This condition turns out to be equivalent to removing all the -dependent terms 
proportional to  and defines a new spin gauge, which we dub SP gauge

ν
pr

In this gauge we find:



Checking the computation: binding energy
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Eb(x) ≡
1
ν [ 1 + 2ν (Ĥcirc

eff (x) − 1) − 1], x ≡ (GMΩ
c2 )

2/3

 is obtained from  by taking the limit  and replacing  
and  with their circular expansion in terms of 
Ĥcirc

eff (x) Ĥeff(u, pr, pφ) pr → 0 pφ
u x

Repeating this computation with  in DJS gauge, SP gauge, and even 
gauge-unfixed form, the SO part of  is the same and reads:

(GS, GS*
)

Eb

We restrict to circular orbits:

Corresponds to the result of [Antonelli et al. 2020]
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Checking the computation: periastron advance
Fractional advance of the periastron per radial period in the quasi-circular limit:

ΔΦ
2π

= K − 1, K ≡
Ωφ

Ωr
pr→0

= ( ∂2Ĥeff

∂r2

∂2Ĥeff

∂p2
r )

−1
∂Ĥeff

∂pφ
pr→0

Again, expressing  and  in  we find the same result regardless of the spin gauge 
used for :

pφ u x
(GS, GS*

) Gives back the 3PN non-spinning 
result of [Le Tiec et al. 2011]



Factorization and final results
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GS = G0
S ĜS GS*

= G0
S*

ĜS*

In the SP gauge the prefactors are:

G0
S = 2uu2

c , G0
S*

= u2
c { A

Q [1 −
uc′ A

u2
c D ] +

(A)′ 

2uc (1 + Q) D }
Resulting inverse-resummed PN residuals:

Q = 1 + p2
φu2

c +
A
D

p2
r



BONUS SLIDES
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χSO,S
eff (ε, pφ, gNmLO

n )
invj ≡ 1/pφ



χSO,S*
eff (ε, pφ, gNmLO

*n )
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invj ≡ 1/pφ


