

Status of H \rightarrow bb and H \rightarrow cc search with full Run 2

27-07-2023

Laura Buonincontri

Analysis group: X. Cid Vidal, L. Sestini, C. Vazquez Sierra, A. Gianelle, D. Zuliani, D. Lucchesi

Introduction

<u>Goal of my thesis</u>: "Inclusive H \rightarrow bb and H \rightarrow cc searches at LHCb with the full Run 2 (5.4 fb⁻¹)"

- DNN-based jet flavour tagging to separate b vs c vs (u,d,s,g)
 - Inputs are not only SV variables. Global quantities of the jet and features of charged and neutral particles in the jet are also considered
 - Three outputs: probabilities to be a b, c, or light jet
 - \circ P_b+P_c+P_q=1
- Significance calculated in the invariant mass range [66,146] GeV (5.4 fb⁻¹) is 0.15
 - \circ ~ expected number of data: 31 M ~

$$S_b = \frac{N_{H \to bb}}{\sqrt{N_{data}}}$$

- expected number of Higgs in bb events: 840
- Significance not enough to measure $H \rightarrow bb$ and $H \rightarrow cc$ cross section
 - limit on the production cross section will be set on the <u>inclusive</u> H→bb and H→ cc production cross sections and prospects for Yukhawa couplings at HL-LHC

Analysis Strategy

- Model of the bb (cc) QCD background for the $H \rightarrow bb$ ($H \rightarrow cc$) search:
 - Define a signal region (SR) and a control region (CR) on **data** by applying requirements on the DNN output:
 - Signal region, signal is expected: both jets in the final state are identified as b quarks;
 - Control region, mixed flavour in order to not have resonances: events that have the same kinematic characteristics as SR, but one quark is identified as b (c) quark, the other as light quark.
 - Transfer Function calculated from the Monte Carlo QCD bb or cc samples + correction function
- Fit to the di-jet invariant mass distribution
- Set of upper limits on inclusive production cross sections with CLs method
- Evaluation of the systematic uncertainties

Data and Monte Carlo samples

- Run II data-taking in the year 2016, center of mass energy 13 TeV
- Events used are those that pass the HLT2 lines: *HLTQEEJetsDiJetSVSV* and *HLTQEEJetsDiJetSV* (prescaled)
 - *HLTQEEJetsDiJetSVSV*: for both jets p₁>17 GeV, SV in jet cone
 - *HLTQEEJetsDiJetSV*: events with two reconstructed jets, at least one with SV
- Stripping lines required are *StrippingHLTQEEJetsDiJetSVSV* and *StrippingHLTQEEJetsDiJetSV* that store events where HLT2 lines are true. Tot integrated luminosity 1.6 fb⁻¹ for both samples.
- Monte Carlo: $H \rightarrow bb$, $H \rightarrow cc$, $Z \rightarrow bb$, $Z \rightarrow cc$, QCD (bb,cc,qq)
- Selection requirements: $P_T > 20$ GeV, 2.2 < $\eta < 4.2$, $|\Delta \phi| > 1.5$, one of the two jets L0Chain TOS and HLT1Chain TOS

Monte Carlo requirements	H→bb	Н→сс	Z→bb	Z→cc
Selection requirements+ both jets SV-tagged	11%	1.4%	14%	1.1%
Selection requirements+ at least one jet SV-tagged	30%	13%	34%	10%

L0Chain TOS:

L0HadronDecision_TOS || L0MuonDecision_TOS || L0PhotonDecision_TOS || L0DiMuonDecision_TOS || L0ElectronDecision_TOS || L0MuonEWDecision_TOS || L0JetPhotonDecision || L0JetPhotonDecision LUT40bain TOS:

HLT1Chain TOS:

HIt1TrackMVADecision_TOS || HIt1TwoTrackMVADecision_TOS || HIt1TrackMuonDecision_TOS || HIt1TrackMVATightDecision_TOS || HIt1TwoTrackMVATightDecision_TOS || HIt1DiMuonHighMassDecision_TOS || HIt1DiMuonLowMassDecision_TOS || HIt1DiMuonLowDecision_TOS || HIt1DiMuonNoL0Decision_TOS;

$H \rightarrow bb$: signal region

- Region where the signal is expected
- DNN P_b and P_q requirements tuned to maximize the significance in the SVSV data sample $S_b = \frac{N_{H \to bb}}{\sqrt{N_{data}}}$

$$N_{sign} = \mathcal{L} \cdot \sigma_{th} \cdot A \cdot \epsilon$$

 $\mathcal{L} = 1644.16 \text{ pb}^{-1}$

 ϵ includes the selection efficiencies, the cut on the DNN probability

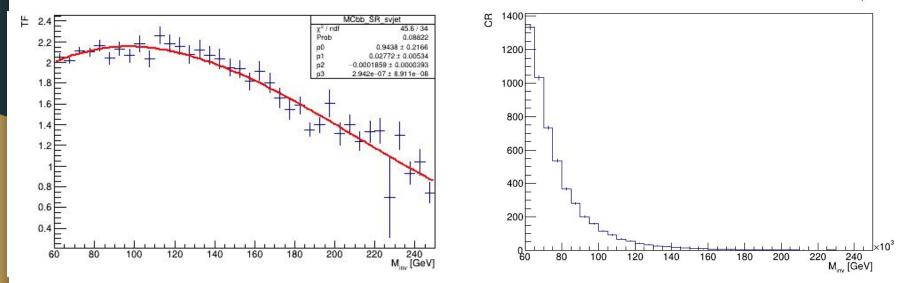
• Maximum significance reached when both jets have P_b>0.25

Requirements	P _b >0.25 on both jets
N _{H→bb}	257
N _{Data}	2.1e+07
Purity (N _{H→bb} /N _{Data})	1.3e-05
Significance	0.057

Purity and significance calculated in the entire mass spectrum 5

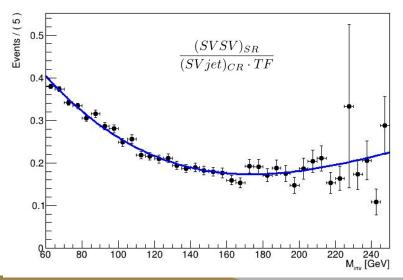
$H \rightarrow bb: control region$

- The goal is to have a data sample with enough data statistics while minimizing the number of signal events
- This search is done both in SVSV and in SVjet samples
- Different criteria have been studied to choose the best working point:
 - Significance minimization
 - $\circ \qquad \text{Purity minimization N}_{\text{H} \rightarrow \text{bb}}/\text{N}_{\text{Data}}$
 - $F=N_{H\to bb}/(N_{Data})^{3/2}$ minimization (the idea was to increase the data statistics while keeping purity close to the minimum)
- Statistics higher in the SVSV sample, but SV+jet sample offers higher purity (less signal contamination in the CR)


		Working Point SVSV, CR	Working point SV+jet, CR
Working point SR	P _b >0.25 on both jets	P _b >0.25 on one jet	P _b >0.25 on the jet with SV,
N _{Data}	2.1e+07	$P_{b}^{<}$ 0.25 on the other jet	$P_b^{\nu} < 0.22$ on the other jet
Purity	1.3e-05	N data: 3.23e+06	N data: 1.1e+06 (with pre-scaling)
Significance	0.057	Significance: 0.009	Significance: 0.02
		Purity: 5e-06	Purity: 2.2e-06
		F: 2.7e-09	F: 2.1e-10

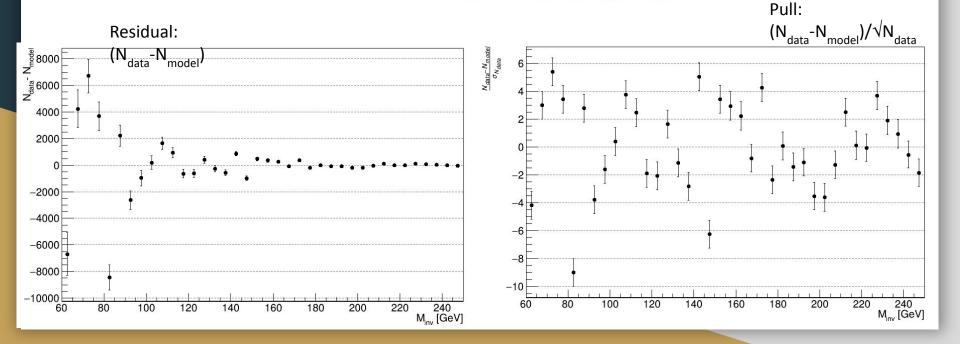
Transfer Function fit Range [60,250] GeV

QCD bb background sample used to calculate the Transfer Function as a function of the dijet invariant mass $n_{events,SR}$

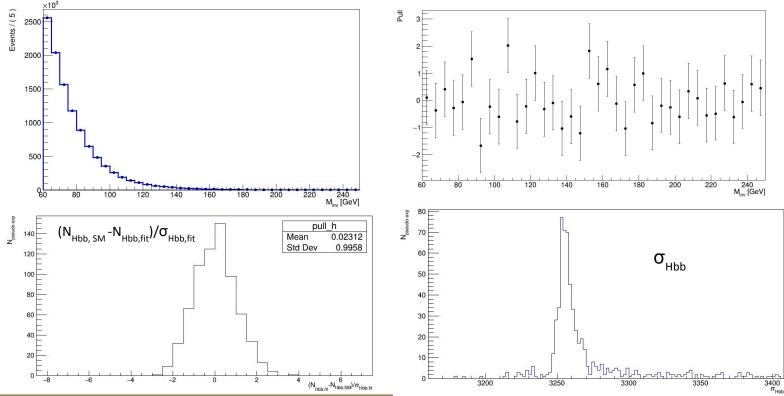

 $n_{events,CR}$

 TF

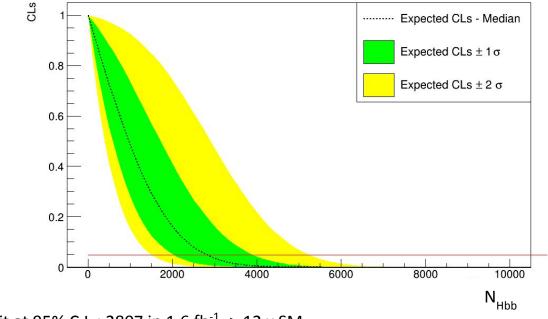
$H \rightarrow bb$: full fit model


- Model to fit data in SVSV Signal Region, range [60,250] GeV:
 - \circ H \rightarrow bb, Z \rightarrow bb, H \rightarrow cc, Z \rightarrow cc distributions from Monte Carlo
 - QCD background modeled as data in CR x TF (with CR and TF built from with SVjet samples)
 - Correction function (shape: Bernstein function)
- Determination of the proper number of coefficients of the Bernstein function: F-test
 - decide whether or not to reject the lower polynomial degree in favor of the higher polynomial degree
 - Bernstein polynomial degree: 4
 - Correction function initial parameters: calculated by fitting a small portion of data
 - Parameters of the correction function left free to vary in the fit to data
 - N_{data} and N_{Hbb} left free in the fit to data

Fit to data results: H to bb


• Results on signal and background left blind

Error on Higgs: 3257.03 x0: 6.59769 +/- 0.573768 x1: 1.49541 +/- 0.132015 x2: 2.84324 +/- 0.250394 x3: 3.14267 +/- 0.279535



Monte Carlo fit validation

- Monte Carlo pseudo-experiment done with the Bern-4 correction function
- Initial values taken from the fit to data and then left free to vary in the fit

Expected limit at 95% C.L.: 2807 in 1.6 fb⁻¹ -> 12 x SM

Expected limit at 95% C.L. in 5.4 fb⁻¹ (full Run 2) -> 6 x SM

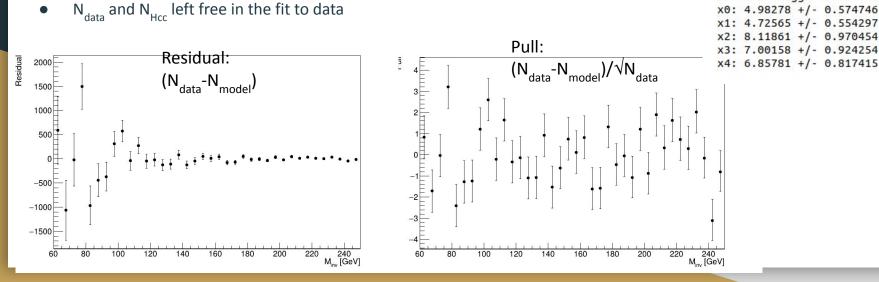
Expected limit at 95% C.L. in 50 fb⁻¹ (full Run 3+4) -> 2 x SM

Expected limit at 95% C.L. in 300 fb⁻¹ (HL-LHC) -> $0.9 \times SM$

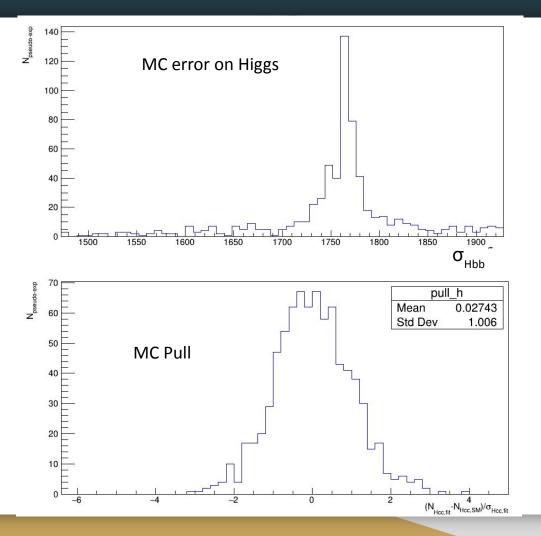
Signal and Control region H to cc

- Run II data-taking in the year 2016, center of mass energy 13 TeV, tot integrated luminosity 1.6 fb⁻¹
- Trigger: *HLTQEEJetsDiJetSVSV* and *HLTQEEJetsDiJetSV* (prescaled), *StrippingHLTQEEJetsDiJetSVSV* and *StrippingHLTQEEJetsDiJetSV*
- Monte Carlo: $H \rightarrow bb$, $H \rightarrow cc$, $Z \rightarrow bb$, $Z \rightarrow cc$, QCD (bb, cc, qq)
- Selection requirements: $P_T > 20$ GeV, 2.2 < η < 4.2, $|\Delta \phi| > 1.5$, one of the two jets L0Chain TOS and HLT1Chain TOS
- **SIGNAL REGION**: DNN P_c and P_q requirements tuned to maximize the significance in the SVSV data sample
- Maximum significance: both jets have P_>0.15

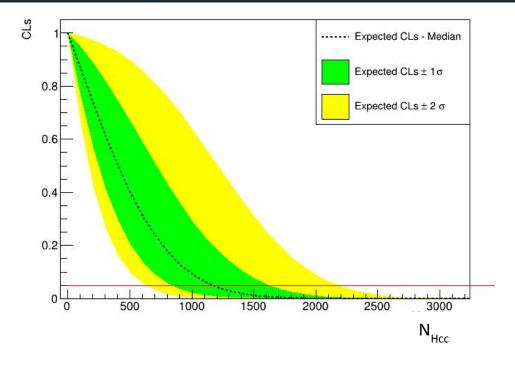
Signal region	P _c >0.15 on both jets
N _{H→cc}	1.8 (entire mass spect)
N _{Data}	4 M (entire mass spect)
Purity (N _{H→cc} /N _{Data})	5.0e-07 (entire mass spect)
Significance	0.0008 (entire mass spect)


- **CONTROL REGION:** the goal is to have a data sample with enough data statistics while minimizing the number of signal events
- This search is done both in SVSV and in SVjet samples

Control region	Minimum Signif. and purity
Cuts on P _c	P _c >0.15 on one jet P _c < 0.02 on the other jet
N data	4.5e+06
Significance	2.4e-05
Purity	1.1e-08


Low data statistics in the SV+jet sample, the SVSV is used

Fit to the SVSV signal region


- Model to fit invariant mass distribution of data selected *HLTQEEJetsDiJetSVSV* Signal Region:
 - \circ H \rightarrow bb, Z \rightarrow bb, H \rightarrow cc, Z \rightarrow cc distributions from Monte Carlo
 - QCD background modeled as:
 - data SVSV in CR x Transfer Function (TF) determined using invariant mass distribution of Monte Carlo QCD bb and cc samples
 - Correction function (shape: Bernstein polynomial 5 coefficients)
- Correction function initial parameters: calculated by fitting a small portion of data and are left free in the fit to the full dataset

Monte Carlo fit validation H to cc

Expected Upper Limit on H to cc

L=1.6fb⁻¹: 1174 -> 665x SM

Scaling with luminosity:

L=5.6 fb⁻¹ -> 356 x SM

L=50 fb⁻¹ -> 116 x SM

L=300 fb⁻¹ -> 47 x SM

Improvements to the H to cc significance

Upper limit roughly scales with the inverse of the Higgs significance S

- How much the significance increases without requiring SV, only DNN
 - Trigger line and stripping line with two jets required (Hlt2: Hlt2JetsDiJet and Stripping: FullDiJetsLine, total prescale:
 1.3e-05)
 - Same selection requirements of the analysis: $P_T > 20$ GeV, 2.2 < η < 4.2, $|\Delta \phi| > 1.5$, one of the two jets L0Chain TOS and HLT1Chain TOS
 - \circ DNN P_c and P_a optimized to maximize the significance

S (dijets): 0.0011 S (SVSV): 0.0008

• C.o.m. will pass from 13 TeV to 14 TeV:
$$f = \frac{S(14TeV)}{S(13TeV)} = \frac{N_H(14TeV)}{N_H(13TeV)} \sqrt{\frac{N_{bkg}(13TeV)}{N_{bkg}(14TeV)}} \sqrt{\frac{N_{bkg}(13TeV)}{N_{bkg}(14TeV)}} = \frac{N_H(14TeV)}{N_H(13TeV)} \sqrt{\frac{N_{bkg}(14TeV)}{N_{bkg}(14TeV)}} = \frac{N_H(14TeV)}{N_{bkg}(14TeV)} + \frac{N_H(14TeV)}{N_{bkg}(14TeV$$

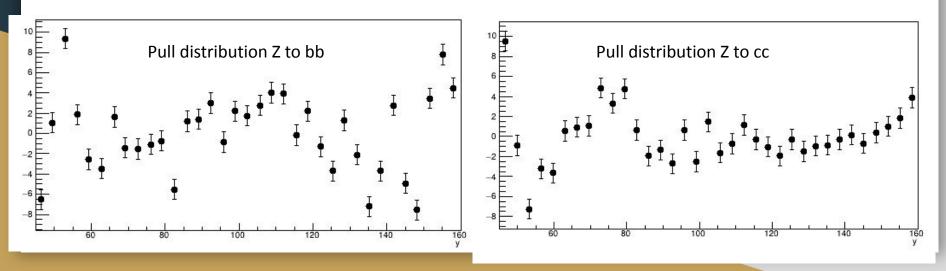
$$\frac{N_{bb}(14TeV)}{N_{bb}(13TeV)} = \frac{(\sigma_{bb} \cdot A)(14TeV)}{(\sigma_{bb} \cdot A)(13TeV)} = 1.17 + / -0.06 \qquad \qquad \frac{N_{H}(14TeV)}{N_{H}(13TeV)} = \frac{(\sigma_{H} \cdot A)(14TeV)}{(\sigma_{H} \cdot A)(13TeV)} = 1.13 + / -0.08 \qquad \qquad \text{Factor~1}$$

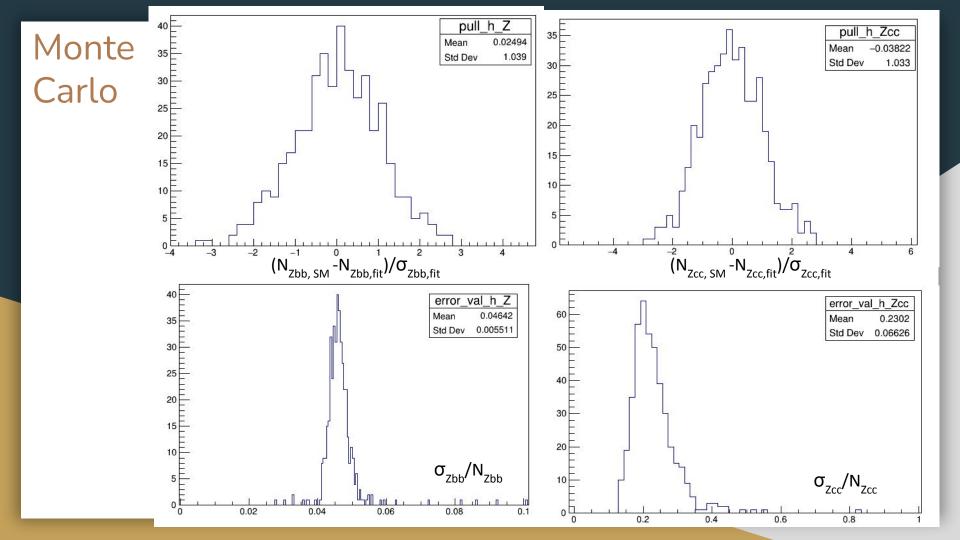
• Scaling factors for mixed flavour background are compatible with the bb and qq samples

Prospects on H to cc

*LHCb-CONF-2016-006 **https://agenda.infn.it/getFile.py/access?contribId=36& sessionId=4&resId=0&materiaIId=slides&confld=12253

Final prospect for the upper limit on the inclusive Higgs cross section at HL-LHC, taking into account DNN improvement:


$$\frac{BR(H \to c\bar{c})}{BR_{SM}(H \to c\bar{c})} < 33$$


- V + H_o (\rightarrow cc) limit: 6400xSM at 8 TeV in (*)
- From (**) limit recast for the H to cc cross section with the Higgs produced in association with a W/Z
 - V + H₀ (→ cc) limit: **50xSM** without any improvement in the analysis and the detector at HL-LHC
 V + H₀ (→ cc) limit: **13xSM** with improvement in the c-tagging (best IP resolution) at HL-LHC
 V + H₀ (→ cc) limit: **5-10xSM** with improvement in the c tagging and analysis at HL-LHC
- With the improvement on c-tagging applied to the inclusive production, the 33xSM limit could become **~8.6xSM**

Z to bb and Z to cc fit

- Simultaneous fit of the Z to bb and Z to cc in the two signal regions, mass range [45,160] GeV:
 - One common signal strength parameter between the two fits for the Z to bb and one for the Z to cc
 - Number of data left free in the fit
 - The correction functions : Bernstein function with 4 coefficients for the cc and Bernstein function with 6 coefficients for bb

Z to bb signal strength: 6.5e-01 +/- 4.74e-02 Z to cc signal strength: 1.6e+00 +/- 2.26e-01

Current focus

H to cc:

Modelling the correction with Bernstein poly, 5 coeff: L=1.6fb⁻¹: 1174 -> 667x SM

- Calculation of systematic uncertainties started:
 - Systematic on correction function
 - to be added in limit calculation
 - Systematic on SV tagging:
 - Effects on limit to be determined

Modelling the correction with
Bernstein poly, 6 coeff
L=1.6fb ⁻¹ : 1171.9 -> 666x SM

	N Z in cc	N Z in bb	N H in cc	N H in bb	
No Corr	15338	191391	2,1	265	
Corr+1 sigma	18404	236841	2,2	353	
Corr	15263	204406	1,7	302	
Corr-1 sigma	12416	174431	1,3	258	

÷2	jet $p_{\rm T}$ (GeV)	jet η	b jets	c jets
	10 - 20	2.2 - 4.2	0.89 ± 0.04	0.81 ± 0.09
	20 - 30	2.2 - 4.2	0.92 ± 0.07	0.97 ± 0.09
	30 - 50	2.2 - 4.2	1.06 ± 0.08	1.04 ± 0.09
	50 - 100	2.2 - 4.2	1.10 ± 0.09	0.81 ± 0.15

Next steps

- Complete the systematics and efficiency correction calculation:
 - Strategy defined for the calculation of some systematics: Control Region statistics, signal contamination in CR, DNN efficiency
 - For the others I will follow the same strategy that are explained in the analysis note "Measurement of differential bb and cc̄ cross sections in the forward region of pp collisions at √s = 13 TeV": Jet Energy Correction, Jet Energy Scale, Jet Identification, Trigger...

TIMELINE

- by the end of August:
 - complete the systematics (upload results on the H to cc paper from time to time)
 - write the introduction chapters (detector, Higgs, event reconstruction)
- since September: apply to Z to bb and Z to cc fit, write the analysis

Contents

1 Introduction

iders .	
collider	s.
ider .	
i	iders . collider

. .

::

1000

3 LHCb detector description

HC ove	rview			•	•		•				•		•							•	•		•		-	•	•		•			•	
etector	overviev	W																	÷									-					
2.1 V	ertex Lo																														÷		
2.3 T	racking s	systen	n															3		2	4	a.	2	4	÷			2		2	i.		
2.4 R	ICH	i nars							s.	1		s.						x.	i.		2	i.		23	i.		¥.	ï		1	ŝ		÷
2.5 C	alorimet	ers .	2	<u>_</u>				਼	0			0						0	2	2	0	ų.	2	2	਼	2		Ç.		2	2	20	
2.6 N	luon syst	tems	÷																												÷		
rigger .																															2		
3.2 H	LT								×.			y.						y.			2			2	-						2		
racking	perform	ances	.						2											2	<u>.</u>	a.	2		÷	2		i.	2	2	ŝ.	2	-
	etector 2.1 V 2.2 M 2.3 T 2.4 R 2.5 C 2.6 M rigger - 3.1 L 3.2 H	etector overview 2.1 Vertex Lo 2.2 Magnet 2.3 Tracking : 2.4 RICH 2.5 Calorimet 2.6 Muon sys rigger	etector overview 2.1 Vertex Locator 2.2 Magnet 2.3 Tracking system 2.4 RICH 2.5 Calorimeters . 2.6 Muon systems rigger 3.1 L0 trigger 3.2 HLT	etector overview 2.1 Vertex Locator 2.2 Magnet 2.3 Tracking system 2.4 RICH 2.5 Calorimeters 2.6 Muon systems rigger 3.1 L0 trigger 3.2 HLT	etector overview	etector overview 2.1 Vertex Locator 2.2 Magnet 2.3 Tracking system 2.4 RICH 2.5 Calorimeters 2.6 Muon systems 3.1 L0 trigger 3.2 HLT	etector overview	etector overview	etector overview 2.1 Vertex Locator 2.2 Magnet 2.3 Tracking system 2.4 RICH 2.5 Calorimeters 2.6 Muon systems	etector overview 2.1 Vertex Locator 2.2 Magnet 2.3 Tracking system 2.4 RICH 2.5 Calorimeters 2.6 Muon systems 3.1 L0 trigger 3.2 HLT	etector overview 2.1 Vertex Locator 2.2 Magnet 2.3 Tracking system 2.4 RICH 2.5 Calorimeters 2.6 Muon systems rigger	etector overview 2.1 Vertex Locator 2.2 Magnet 2.3 Tracking system 2.4 RICH 2.5 Calorimeters 2.6 Muon systems rigger	etector overview 2.1 Vertex Locator 2.2 Magnet 2.3 Tracking system 2.4 RICH 2.5 Calorimeters 2.6 Muon systems 3.1 L0 trigger 3.2 HLT	etector overview 2.1 Vertex Locator 2.2 Magnet 2.3 Tracking system 2.4 RICH 2.5 Calorimeters 2.6 Muon systems rigger	etector overview 2.1 Vertex Locator 2.2 Magnet 2.3 Tracking system 2.4 RICH 2.5 Calorimeters 2.6 Muon systems rigger	etector overview 2.1 Vertex Locator 2.2 Magnet 2.3 Tracking system 2.4 RICH 2.5 Calorimeters 2.6 Muon systems rigger	etector overview 2.1 Vertex Locator 2.2 Magnet 2.3 Tracking system 2.4 RICH 2.5 Calorimeters 2.6 Muon systems rigger	etector overview 2.1 Vertex Locator 2.2 Magnet 2.3 Tracking system 2.4 RICH 2.5 Calorimeters 2.6 Muon systems rigger	etector overview 2.1 Vertex Locator 2.2 Magnet . 2.3 Tracking system . 2.4 RICH . 2.5 Calorimeters . 2.6 Muon systems . rigger . . 3.1 L0 trigger .	etector overview 2.1 Vertex Locator 2.2 Magnet 2.3 Tracking system 2.4 RICH 2.5 Calorimeters 2.6 Muon systems rigger	etector overview 2.1 Vertex Locator 2.2 Magnet 2.3 Tracking system 2.4 RICH 2.5 Calorimeters 2.6 Muon systems rigger	etector overview 2.1 Vertex Locator 2.2 Magnet 2.3 Tracking system 2.4 RICH 2.5 Calorimeters 2.6 Muon systems rigger	etector overview 2.1 Vertex Locator 2.2 Magnet 2.3 Tracking system 2.4 RICH 2.5 Calorimeters 2.6 Muon systems rigger	etector overview 2.1 Vertex Locator 2.2 Magnet 2.3 Tracking system 2.4 RICH 2.5 Calorimeters 2.6 Muon systems rigger	etector overview 2.1 Vertex Locator 2.2 Magnet 2.3 Tracking system 2.4 RICH 2.5 Calorimeters 2.6 Muon systems rigger	etector overview 2.1 Vertex Locator 2.2 Magnet 2.3 Tracking system 2.4 RICH 2.5 Calorimeters 2.6 Muon systems rigger	etector overview 2.1 Vertex Locator 2.2 Magnet 2.3 Tracking system 2.4 RICH 2.5 Calorimeters 2.6 Muon systems rigger	etector overview 2.1 Vertex Locator 2.2 Magnet 2.3 Tracking system 2.4 RICH 2.5 Calorimeters 2.6 Muon systems rigger	etector overview 2.1 Vertex Locator 2.2 Magnet 2.3 Tracking system 2.4 RICH 2.5 Calorimeters 2.6 Muon systems rigger	2.1 Vertex Locator 2.2 Magnet 2.3 Tracking system 2.4 RICH 2.5 Calorimeters 2.6 Muon systems rigger	etector overview 2.1 Vertex Locator 2.2 Magnet 2.3 Tracking system 2.4 RICH 2.5 Calorimeters 2.6 Muon systems rigger	etector overview 2.1 Vertex Locator 2.2 Magnet 2.3 Tracking system 2.4 RICH 2.5 Calorimeters 2.6 Muon systems rigger	etector overview 2.1 Vertex Locator 2.2 Magnet 2.3 Tracking system 2.4 RICH 2.5 Calorimeters 2.6 Muon systems rigger

4	Jets	s reconstruction, flavour tagging and event selection at LHCb
	4.1	Simulations
	4.2	Jets reconstruction algorithms
		4.2.1 Particle flow
		4.2.2 Jet clustering with anti kt algorithm
		4.2.3 Jet Energy correction
	4.3	Flavour tagging algorithm
	-	4.3.1 SV tagging algorithm
		4.3.2 Tagging Performance
	4.4	DNN for flavour tagging
	_	4.4.1 DNN scheme
		4.4.2 Application of DNN to jets
	1	
5	Sear	rch for H to bb and H to cc at LHCb
	5.1	Introduction
	5.2	Monte Carlo and data samples
		5.2.1 Event selection and yield prediction
	5.3	Analysis strategy
	-	5.3.1 Background determination
		5.3.2 Definition of signal and control region
		5.3.3 Definition of the transfer function
		5.3.4 Application of SR and CR to signal resonances
		store services of the service services and the services of the

6	Upper limits on H to bb and H to cc cross sections at LH	HCb
	6.1 Fit to the signal region	
	6.2 Systematic uncertainties	
	6.3 Upper limits results	

7 Z to bb and Z to cc cross section determination

7.1	Event selection and yield prediction				• •												÷
7.2	Test of the signal extraction		 					•			•	-	•		- 2		-
1.0	Fit to the signal region	. •	 . •	. *	• •		1	٠	*	1	٠	10	•	2	•		
7.4	Systematic uncertainties	•					-					-			•	*	÷
7.5	Results								×			-			-		

8 The Muon collider machine and detector

8.1	Overview of the facility	
8.2	The interaction region and machine-detector interface	÷
8.3	Beam induced background	2
8.4	Muon Collider detector	
8.5	Overview of the detector	
8.6	Vertex detector and tracking system	
	8.6.1 Vertex detector	
	8.6.2 Tracker System	
8.7	Calorimetry	
8.8	Electromagnetic and hadronic calorimeter	
8.9	Calorimeter system performance	
8.10	Solenoid and Muon detector	
	8.10.1 Vertex detector and tracking system	
	8.10.2 Calorimeter system	
	8.10.3 Solenoid and muon detector	
	8.10.4 Effects of BIB on muon collider detector and mitigation strategies .	

9		ent reconstruction at Muon Collider	
	9.1	Track reconstruction	•
		9.1.1 Tracking performance	
	9.2	Particle flow	
	9.3	Jet reconstruction	į,
		9.3.1 Jet reconstruction efficiency and resolution	2
	9.4	b tagging algorithm	

10 Higgs coupling to b and Higgs self-coupling at muon collider 10.1 Reconstruction of Higgs to bb at 3 TeV muon collider 10.2 Double Higgs reconstruction in 4b 10.2.1 Signal and background events generation 10.2.2 Event selection 10.3 Determination of the HH cross section precision 10.3.1 Study of kinematic properties 10.3.2 Multivariate analysis 10.3.4 Determination of the HH cross section precision

 10.4 Determination of the sensitivity on the Higgs self-coupling

 10.4.1 Study of kinematic properties

 10.4.2 Multivariate analysis

 10.4.3 Event classification

 10.4.4 Scan of the likelihood

 10.4.5 Determination of the uncertainty on the trilinear Higgs self-coupling

11 Conclusions and Future Prospects

11.1 Prospects on H to cc at LHCb at HL-LHC

References

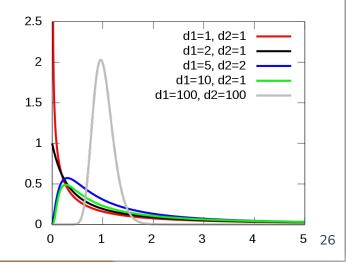

BACKUP

$H \rightarrow bb$: transfer function SVjet

 QCD bb background sample used to calculate the Transfer Function as a function of the dijet invariant mass

 $= \frac{n_{events,SR}}{n_{events,CR}}$

TF

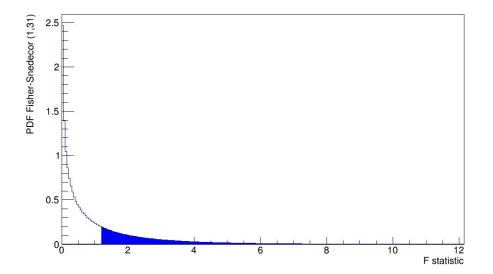


F-test

- 1. Define a larger full model. ("larger," with more parameters.)
- 2. Define a smaller reduced model. ("smaller," with fewer parameters.)
- 3. Use an *F*-statistic to decide whether or not to reject the smaller reduced model in favor of the larger full model
 - a. Size of the test: alpha=0.05
 - b. Null hypothesis: additional parameter is useless
 - c. Null hypothesis always pertains to the reduced model, the alternative hypothesis always pertains to the full model.
 - d. F is distributed as a Fisher-Snedecor distribution
 - e. Calculate the F statistic from data ("Ftest") and p as 1-<u>FDistl</u>(Ftest,p2-p1,N-p2)
 - f. reject the null hypothesis if p < alpha

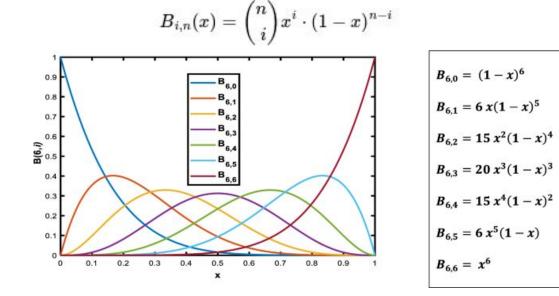
 $\sum_{i} (y_i - f_1(x_i))^2 - \sum_{i} (y_i - f_2(x_i))^2$ $\frac{p_2 - p_1}{\sum (y_i - f_2(x_i))^2}$ $n-p_2$

f1: reduced model f2: full model p1: N parameters in f1 p2: N parameters in f2 N: Nbins

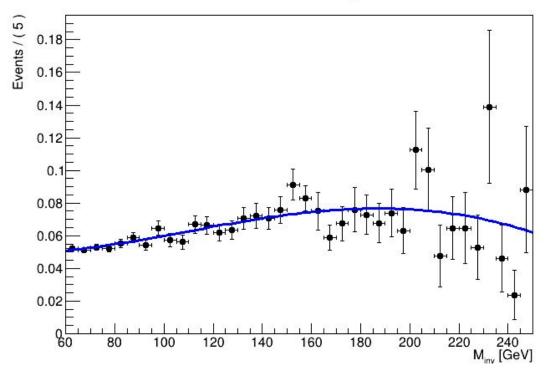


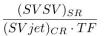
Fisher test H to bb

1-<u>FDistl</u>(Ftest,p2-p1,N-p2)


F value Bernst(degree 2 vs 3): 305 F value Bernst(degree 3 vs 4): 772 F value Bernst(degree 4 vs 5): 1.19

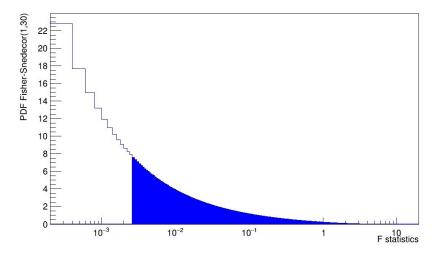
p value Bernst(degree 2 vs 3): 1.1e-16 p value Bernst(degree 3 vs 4): 1.1e-16 p value Bernst(degree 4 vs 5): 0.3

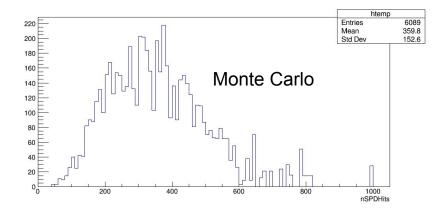

Bernstein polynomial

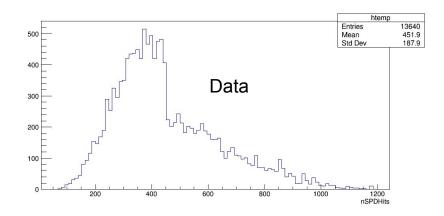

$$PDF(x,c_0,\ldots,c_n) = \mathcal{N} \cdot \sum_{i=0}^n c_i \cdot B_{i,n}(x).$$

Correction function H to cc

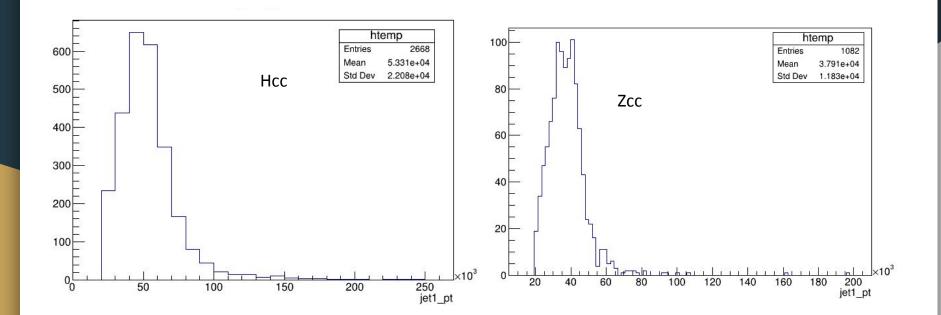
A RooPlot of "y"




Fisher test H to cc


F value Bernst(degree 2 vs 3): 68.1678 F value Bernst(degree 3 vs 4): 52.7894 F value Bernst(degree 4 vs 5): 17.9335 F value Bernst(degree 5 vs 6): 0.00553859

p value Bernst(degree 2 vs 3): 1.55447e-09 p value Bernst(degree 3 vs 4): 2.95368e-08 p value Bernst(degree 4 vs 5): 0.00018944 p value Bernst(degree 5 vs 6): 0.941169



Global Event Cut

PT Higgs and Z

