Non-perturbative Heavy Quark Effective Theory and *B*-**physics**

Mauro Papinutto

Università di Roma "La Sapienza", June 1st 2011

Outline

- Introduction & motivations
- Non-perturbative Heavy Quark Effective Theory (HQET)
- Example: M_b in HQET including $O(1/m_h)$ corrections
- Computation of the $B_{d,s}$ meson B-parameters
- Non-perturbative renormalization of $\Delta B=2~{\rm HQET}$ operators
- $\Delta B = 2$ transitions in general SUSY models

CP-violation in the SM

• *CP*-violation arises from the coupling of quark currents to charged gauge bosons:

$$W_{\mu}^{+} \left(\bar{u} \ \bar{c} \ \bar{t} \right) \frac{1}{2} \gamma_{\mu} (1 - \gamma_{5}) \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix} + h.c.$$

• Unitarity of the CKM matrix leaves four free real parameters. In Wolfenstein parametrisation:

$$V_{CKM} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

• *CP*-violation $\Leftrightarrow \eta \neq 0$. One can express the unitarity constraint on the *CP*-violation phase through the so-called unitarity triangle:

Weak effective Hamiltonian $\mathcal{H}_{\rm eff}$

• Use OPE to integrate out high-energy electroweak physics

$$\mathcal{A}(i \to f) \approx \langle f | \mathcal{H}_{\text{eff}} | i \rangle \qquad \mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \sum_k V_{CKM}^k C_k(\mu/M_W) Q_k(\mu)$$

1. $\mathcal{A}(i \rightarrow f)$ measured experimentally.

- 2. Wilson coefficients $C_k(\mu/M_W)$ ($\Lambda_{QCD} \ll \mu \ll M_W$) \iff short-distance contribution, typically known at NLO in PT.
- 3. Weak matrix elements $\langle f|Q_k(\mu)|i\rangle \iff \text{long-distance} (\text{QCD}) \text{ contribution} \Rightarrow$ to be computed non-perturbatively, e.g. by using lattice QCD.
- $1 + 2 + 3 \Rightarrow$ determination of V_{CKM}^k
- Examples of experimentally measured quantities (large amount of data collected [BaBar, Belle, D0, CDF II] & expected [LHC-b, SuperB factory,....]):
 - neutral *B*-meson mass differences $\Delta m_{d,s}$ (control the frequencies of $B_d \bar{B}_d$ and $B_s - \bar{B}_s$ oscillations);
 - time-dependent CP asymmetry $a_{J/\psi K_s}(t)$ in $B_d \to J/\psi K_s$ decays.

CP-violation phenomenology in the SM

•
$$\Delta m_q = |\langle \bar{B}^0_q | \mathcal{H}^{\Delta B=2}_{ ext{eff}} | B^0_q \rangle | / m_{B_q} = C_B \, m_{B_q} \, f^2_{B_q} \, B_{B_q} \, |V_{tq}|^2$$
 with

$$B_{B_q}(\mu) = \frac{\langle \bar{B}_q^0 | \mathcal{O}_{LL}^{\Delta B=2}(\mu) | B_q^0 \rangle}{\langle \bar{B}_q^0 | \mathcal{O}_{LL}^{\Delta B=2} | B_q^0 \rangle_{VSA}} = \frac{\langle \bar{B}_q^0 | \bar{b} \gamma_\mu (1 - \gamma_5) q \ \bar{b} \gamma_\mu (1 - \gamma_5) q | B_q^0 \rangle}{\frac{8}{3} f_{B_q}^2 m_{B_q}^2}$$

•
$$\Delta m_d = C_B m_{B_d} f_{B_d}^2 B_{B_d} A^2 \lambda^6 \left[(1 - \bar{\rho})^2 + \bar{\eta}^2 \right]$$

yields a $(f_{B_d}^2 B_{B_d}$ -dependent) circle centered in (1,0).

•
$$\frac{\Delta m_d}{\Delta m_s} = \frac{m_{B_d} f_{B_d}^2 B_{B_d}}{m_{B_s} f_{B_s}^2 B_{B_s}} \frac{|V_{td}|^2}{|V_{ts}|^2} \simeq \frac{m_{B_d}}{m_{B_s}} \xi^2 \frac{\lambda^2}{\left(1 - \frac{\lambda^2}{2}\right)^2} \left[(1 - \bar{\rho})^2 + \bar{\eta}^2 \right]$$

yields a
$$\left(\xi \equiv \frac{f_{B_s}\sqrt{B_{B_s}}}{f_{B_d}\sqrt{B_{B_d}}}$$
-dependent) circle centered in $(1,0)$.

•
$$a_{J/\psi K_s}(t) \equiv a_{J/\psi K_s} \sin(\Delta m_d t) = \sin 2\beta \sin(\Delta m_d t) \Rightarrow \text{yields } \sin 2\beta$$

(in the SM $2\beta = \arg \langle \bar{B}^0_d | \mathcal{H}^{\Delta B=2}_{\mathrm{eff}} | B^0_d \rangle$).

 In a world without uncertainties (within the SM):

• In the real world:

- Non-SM *CP*-violation could be detected as an inconsistency between the positions of the upper vertex as determined by different kinds of physics.
- uncertainties in the theoretical inputs (i.e. the hadronic parameters $m_{\rm b}$, $f_{B_{d,s}}$, $B_{B_{d,s}}$, B_K) plays a crucial role in the precise determination of the CKM parameters \Rightarrow it's important to reduce them!

Lattice QCD: motivations

Lattice QCD is the only first-principles approach to study non-perturbative properties of QCD (hadron spectrum, matrix elements, . . .). Many systematics:

- 1. continuum limit extrapolation.
- 2. UV (lattice spacing a) and IR (volume V) cutoffs constrain quark masses \Rightarrow extrapolations to the chiral/heavy quark regime.
- 3. dynamical light quark effects numerically expensive \Rightarrow neglected in the past (quenched approx. \Rightarrow useful to pin down systematics, develop new methods).

light quarks are too light \Rightarrow extrapolate by matching with chiral effective theory.

b-quark is too heavy $(m_b a > 1)$ \Rightarrow need an effective theory for the b quark: HQET (expansion in inverse powers of the heavy quark mass).

- 4 possible strategies:
- 1. Combine relativistic simulations with $m_{\rm h} \approx m_{\rm c}$ and the static limit of HQET to interpolate at $m_{\rm b}$.
- 2. Work in the static limit of HQET ($m_{\rm h} \rightarrow \infty$) and compute $1/m_{\rm h}^n$ corrections.[Heitger & Sommer, 2004]
- 3. Use finite size methods to relate relativistic observables computed on small volume at physical $m_{\rm b}$ to their value in infinite volume.[Guagnelli *et al.*, 2002]

4. Use appropriate ratios of observables which have an a priori known static limit. Evaluate them around m_c and interpolate to m_b . Use recursive relation to obtain the observable at m_b . [Blossier *et al.*[ETMC], 2009]

Non-perturbative HQET

heavy quark and anti-quark fields ψ_h , $\psi_{\bar{h}}$ are now independent and satisfy

$$P_{+}\psi_{h} = \psi_{h}, \quad \overline{\psi}_{h}P_{+} = \overline{\psi}_{h}, \quad P_{+} = \frac{1}{2}(1+\gamma_{0})$$
$$P_{-}\psi_{h} = \psi_{h}, \quad \overline{\psi}_{h}P_{-} = \overline{\psi}_{h}, \quad P_{-} = \frac{1}{2}(1-\gamma_{0})$$

HQET action on a lattice (scaling out $\exp(-m_{bare}x_0)$ from $\overline{\psi}_h(x)$):

$$S_{\text{HQET}} = a^{4} \sum_{x} \{ \overline{\psi}_{h}(x) D_{0} \psi_{h}(x) + \omega_{\text{spin}} \overline{\psi}_{h}(-\sigma \cdot \mathbf{B}) \psi_{h} + \omega_{\text{kin}} \overline{\psi}_{h}(-\frac{1}{2} \nabla^{2}) \psi_{h} + O(1/m^{2}) \}$$

also the composite fields have a $1/m\,\, {\rm expansion}$ in the effective theory

$$A_0^{\mathrm{HQET}}(x) = Z_{\mathrm{A}}^{\mathrm{HQET}} \overline{\psi}_{\mathrm{l}}(x) \gamma_0 \gamma_5 \psi_{\mathrm{h}}(x) + c_{\mathrm{A}}^{\mathrm{HQET}} \overline{\psi}_{\mathrm{l}} \gamma_j \overleftarrow{\nabla}_j \psi_{\mathrm{h}} + \mathcal{O}(1/m^2)$$

where $\omega_{\rm kin} = {\rm O}(1/m)$, $\omega_{\rm spin} = {\rm O}(1/m)$, $c_{\rm A}^{\rm HQET} = {\rm O}(1/m)$

in the path integral: expand the action in powers of 1/m

$$S_{\text{HQET}} = a^4 \sum_{x} \left\{ \mathcal{L}_{\text{stat}}(x) + \sum_{\nu=1}^{\infty} \mathcal{L}^{(\nu)}(x) \right\} \quad \text{where} \quad \mathcal{L}^{(\nu)} = \mathcal{O}(1/m^{\nu})$$

and consider the higher orders $\mathcal{L}^{(\nu)}$, $\nu \geq 1$ only as operator insertions

$$\langle \mathcal{O} \rangle = \mathcal{Z}^{-1} \int \mathrm{D}\phi \,\mathrm{e}^{-S_{\mathrm{rel}}-S_{\mathrm{stat}}} \mathcal{O} \left\{ 1 - a^4 \sum_x \mathcal{L}^{(1)}(x) + \dots \right\}$$

at a given order in 1/m we have:

- renormalizability \equiv existence of the continuum limit
- continuum asymptotic expansion in 1/m

These properties are not automatic for an effective field theory defined nonperturbatively. E.g. NRQCD does not share them because O(1/m) dimension-5 terms are kept in the action used to compute the path-integral.

Difference to ChPT: as $1/m \rightarrow 0$ interactions are <u>not</u> turned off \Rightarrow need lattice formulation to evaluate it non-perturbatively in g^2 .

Renormalization of HQET has to be done non-perturbatively: hard cut-off (1/a)

$$\Rightarrow \text{e.g.} \qquad \mathcal{O}_{\mathrm{R}}^{\mathrm{d=5}} = Z_{\mathcal{O}} \left[\mathcal{O}^{\mathrm{d=5}} + \sum_{k} c_{k} \mathcal{O}_{k}^{\mathrm{d=4}} \right] \qquad c_{k} = \frac{c_{k}^{(0)} + c_{k}^{(1)} g^{2} + \dots}{a}$$

if c_k computed at a finite order l in g^2 , there is no continuum limit!

$$\Delta c_{k} \sim \frac{g^{2(l+1)}}{a} \sim \frac{1}{a \left[\ln(a\Lambda)\right]^{l+1}} \xrightarrow{a \to 0} \infty$$

perturbative remainder of some parameters computed to *l*-loops with *l* arbitrary

Matching between QCD and HQET

- 1. Fix all the parameters of QCD (bare quark masses) by requiring a set of observables (e.g. hadron masses) to agree with experiment.
- 2. Determine the bare couplings of HQET at order n (m_{bare} , ω_{kin} , ω_{spin} , $c_{\text{A}}^{\text{HQET}}$, $Z_{\text{A}}^{\text{HQET}}$, ...) by imposing

$$\Phi_k^{\text{QCD}}(M) = \Phi_k^{\text{HQET}}(M) + O\left(\frac{1}{M^{n+1}}\right), \quad k = 1, 2, \dots, N_n^{\text{HQET}}$$

 $\Phi_k^{\text{HQET}}(M)$ could be determined phenomenologically from experimentally accessible observables \Rightarrow predictive power of HQET reduced!

Compute Φ_k^{QCD} in lattice QCD \Rightarrow transfer of predictivity from QCD to HQET.

 \Rightarrow heavy quark must be treated relativistically: exactly the same problem in the motivations for using HQET!

Non-perturbative matching between QCD and HQET

Heitger & Sommer, 2004

Way out: use observables Φ_k defined in finite (small) volume and the fact that parameters of the QCD and HQET lagrangians are independent of the volume.

 Φ_k defined on $L = L_1 \approx 0.4 \,\text{fm} \ll 2 \,\text{fm} \Rightarrow \text{simulate very fine } a'\text{s}$ where $m_b a \ll 1$ and $1/(m_b L_1) \ll 1$ (well behaved 1/m-expansion in finite volume).

HQET-parameters from QCD observables in small volume at small lattice spacing

Physical observables (e.g. $B_{\rm B_s}$, $F_{\rm B_s}$) need a large volume, such that the B-meson fits comfortably: $L \approx 4L_1 \approx 1.6 \,\mathrm{fm}$

Connection between L_1 and $4L_1$ achieved recursively in HQET: no relativistic b-quark any more \Rightarrow no problems with the size of a.

Example: $M_{\rm b}$ static (at order $1/m^0$)

[Heitger & Sommer, 2004; Della Morte, Garron, Papinutto and Sommer, 2005-2006]

finite volume B-meson "mass":

$$\Gamma(L) = -\partial_0 \log \langle A_0(x_0) A_0(0) \rangle_{x_0 = L/2}$$

In ∞ volume:

 $m_B \equiv \lim_{L \to \infty} \Gamma^{\text{QCD}}(L, M_{\text{b}}) = \lim_{L \to \infty} \Gamma^{\text{stat}}(L) + m_{\text{bare}} \equiv E_{\text{stat}} + m_{\text{bare}}$

matching condition in finite volume: $\Gamma^{\text{QCD}}(L_1, M_b) = \Gamma^{\text{stat}}(L_1) + m_{\text{bare}}$

 \Rightarrow eliminate m_{bare} and insert $0 = \Gamma^{\text{stat}}(2L_1) - \Gamma^{\text{stat}}(2L_1)$

$$\underbrace{m_B}_{\text{QCD}} = E_{\text{stat}} - \Gamma^{\text{stat}}(L_1) + \Gamma^{\text{QCD}}(L_1, M_{\text{b}})$$
$$= \underbrace{E_{\text{stat}} - \Gamma^{\text{stat}}(2L_1)}_{\text{HQET}} + \underbrace{\Gamma^{\text{stat}}(2L_1) - \Gamma^{\text{stat}}(L_1)}_{\text{HQET}} + \underbrace{\Gamma^{\text{QCD}}(L_1, M_{\text{b}})}_{\text{QCD}}$$

The identity:

is equivalent to (up to lattice artifacts):

Mauro Papinutto, Università "La Sapienza", June '11/17

$M_{\rm b}$ static

and we solve the above equation for $M_{\rm b}$ (the RGI b-quark mass)

 $M_{
m b}~{
m at~order}~1/m~[{
m Della~Morte,~Garron,~Papinutto~and~Sommer,~2005-2006}]$

 $\omega_{\rm spin}$ cancels in spin averaged quantities. Eliminate $m_{\rm bare}$, $\omega_{\rm kin}$:

$$\infty \text{ volume} \qquad m_{\rm B} = E^{\rm stat} + m_{\rm bare} + \omega_{\rm kin} E^{\rm kin}$$

$$Matching 1 \quad \Gamma^{\rm QCD}(L, M_{\rm b}) = \Gamma^{\rm stat}(L) + m_{\rm bare} + \omega_{\rm kin} \Gamma^{\rm kin}(L)$$

$$Matching 2 \quad \Phi_1^{\rm QCD}(L, M_{\rm b}) = \omega_{\rm kin} R_1^{\rm kin}(L) = \Phi_1^{\rm HQET}(L)$$

$$m_{\rm B} = \left[E^{\rm stat} - \Gamma^{\rm stat}(L)\right] + \Gamma^{\rm QCD}(L, M_{\rm b}) + \left[\frac{\Phi_1^{\rm QCD}(L, M_{\rm b})}{R_1^{\rm kin}(L)}(E^{\rm kin} - \Gamma^{\rm kin}(L))\right]$$

One obtains $m_{\rm B}^{\rm exp} = m_{\rm B}(M_{\rm b}^{\rm stat} + M_{\rm b}^{(1)})$ that has to be solved for $M_{\rm b}^{(1)}$.

The (quenched) result in the $\overline{\mathrm{MS}}$ scheme:

$$m_{\rm b}(m_{\rm b}) = m_{\rm b}^{\rm stat} + m_{\rm b}^{(1)} = 4.35(5) \,\text{GeV}$$

 $m_{\rm b}^{\rm stat} = 4.37(5) \,\text{GeV}, \quad m_{\rm b}^{(1)} = -0.027(22) \,\text{GeV}.$

At this order, $M_{\rm b}$ affected by $O(\frac{1}{L_1^3 M_{\rm b}^2})$, $O(\frac{\Lambda_{QCD}}{L_1^2 M_{\rm b}^2})$, $O(\frac{\Lambda_{QCD}^2}{L_1 M_{\rm b}^2})$, $O(\frac{\Lambda_{QCD}^2}{M_{\rm b}^2})$ errors.

Checked by using different matching conditions (different correlators) \Rightarrow final results agree up to (small) $O(1/m^2)$ corrections exactly of $O(\Lambda_{QCD}^3/M_b^2)$

unquenched computation works in exactly the same way. A preliminary result with $N_f = 2$ dynamical flavours [B. Blossier *et al.* Lattice2010] gives

 $m_{\rm b}(m_{\rm b}) = 4.276(25)(50)\,{\rm GeV}$

Other existing unquenched results: $m_{\rm b} = 4.164(23) \,\text{GeV}$ (HPQCD coll. $N_f = 2 + 1$ from current-current correlators) and $m_{\rm b} = 4.63(27) \,\text{GeV}$ (ETM coll. $N_f = 2$)

2nd strategy: *B*-parameters of $\Delta B = 2$ operators [D. Becirevic, V. Gimenez, G. Martinelli, M. Papinutto, J. Reyes 2002]

• $\Delta B = 2$ four fermion operators:

$$Q_{1} = \bar{b}^{i} \gamma_{\mu} (1 - \gamma_{5}) q^{i} \bar{b}^{j} \gamma_{\mu} (1 - \gamma_{5}) q^{j} \qquad O_{1} = \bar{\psi}^{i}_{h} \gamma_{\mu} (1 - \gamma_{5}) q^{i} \bar{\psi}^{j}_{\bar{h}} \gamma_{\mu} (1 - \gamma_{5}) q^{j}$$

$$Q_{2} = \bar{b}^{i} (1 - \gamma_{5}) q^{i} \bar{b}^{j} (1 - \gamma_{5}) q^{j} \qquad O_{2} = \bar{\psi}^{i}_{h} (1 - \gamma_{5}) q^{i} \bar{\psi}^{j}_{\bar{h}} (1 - \gamma_{5}) q^{j}$$

$$Q_{3} = \bar{b}^{i} (1 - \gamma_{5}) q^{j} \bar{b}^{j} (1 - \gamma_{5}) q^{i} \qquad O_{3} = -O_{2} - \frac{1}{2}O_{1}$$

$$Q_{4} = \bar{b}^{i} (1 - \gamma_{5}) q^{i} \bar{b}^{j} (1 + \gamma_{5}) q^{j} \qquad O_{4} = \bar{\psi}^{i}_{h} (1 - \gamma_{5}) q^{i} \bar{\psi}^{j}_{\bar{h}} (1 + \gamma_{5}) q^{j}$$

$$Q_{5} = \bar{b}^{i} (1 - \gamma_{5}) q^{j} \bar{b}^{j} (1 + \gamma_{5}) q^{i} \qquad O_{5} = \bar{\psi}^{i}_{h} (1 - \gamma_{5}) q^{j} \bar{\psi}^{j}_{\bar{h}} (1 + \gamma_{5}) q^{i}$$

• Example
$$B_{B_q}(\mu) = \frac{\langle \bar{B}_q^0 | \mathcal{O}_{\mathrm{LL}}^{\Delta B=2}(\mu) | B_q^0 \rangle}{\frac{8}{3} f_{B_q}^2 m_{B_q}^2} = \frac{\langle \bar{B}_q^0 | Q_1(\mu) | B_q^0 \rangle}{\frac{8}{3} f_{B_q}^2 m_{B_q}^2}$$
:

$$\langle \bar{B}_{q}^{0} | Q_{1}(m_{\rm b}) | B_{q}^{0} \rangle_{\rm QCD} = C_{1}(m_{\rm b}, \mu) \langle \bar{B}_{q}^{0} | O_{1}(\mu) | B_{q}^{0} \rangle_{\rm HQET}$$

+ $C_{2}(m_{\rm b}, \mu) \langle \bar{B}_{q}^{0} | O_{2}(\mu) | B_{q}^{0} \rangle_{\rm HQET} + O(1/m_{\rm b})$

• We want to compute the *B*-parameters of the complete $\Delta B = 2$ basis at the physical b-quark mass. We explain the procedure for Q_1 , Q_2 , Q_3 which mix in the matching. Analogous procedure for Q_4 and Q_5 .

$$\begin{split} \langle \overline{B}_{q} | Q_{1}(\mu) | B_{q} \rangle &\equiv \frac{8}{3} f_{B_{q}}^{2} m_{B_{q}}^{2} B_{1}(\mu) \equiv \frac{8}{3} f_{B_{q}}^{2} m_{B_{q}}^{2} B_{B_{q}}(\mu) \\ \langle \overline{B}_{q} | Q_{2}(\mu) | B_{q} \rangle &\equiv -\frac{5}{3} \left(\frac{f_{B_{q}} m_{B_{q}}^{2}}{m_{b}(\mu) + m_{q}(\mu)} \right)^{2} B_{2}(\mu) \\ \langle \overline{B}_{q} | Q_{3}(\mu) | B_{q} \rangle &\equiv \frac{1}{3} \left(\frac{f_{B_{q}} m_{B_{q}}^{2}}{m_{b}(\mu) + m_{q}(\mu)} \right)^{2} B_{3}(\mu) \end{split}$$

- First step: QCD computation with $m_{\rm h} \approx m_{\rm c}$ (pseudoscalar meson mass m_P).
- Second step: computation in the static limit of HQET
- Third step: matching of QCD onto HQET and interpolation at $m_{\rm b}$:

• Combining HQET with QCD \Rightarrow interpolation to $m_{\rm b}$

• Matching of 4-fermion HQET operators to QCD operators $C(\mu)$ computed at NLO in perturbation theory.

• Results in the $\overline{MS}(NDR)$ scheme at $\mu = m_b$:

 $B_{B_d}(m_b) = 0.87(3)(5)$ $B_{B_s}(m_b) = 0.87(2)(5)$

- also B_2 , B_3 , B_4 , B_5 (relavant for physics beyond the SM) have been computed.
- This was an exploratory study:
 - 1. quenched approximation
 - 2. no continuum limit extrapolation
 - 3. 1-loop perturbative renormalization of HQET operators
- Only existing $N_f = 2 + 1$ unquenched determination of $B_{B_d} = 0.84(7)$ and $B_{B_s} = 0.86(7)$ (HPQCD by using NRQCD). Difficult to asses the error due to power divergent subtractions of the operators computed in perturbation theory...
- two other $N_f = 2+1$ (HQET and FERMILAB action) calculations of $\xi \equiv \frac{f_{B_s}\sqrt{B_{B_s}}}{f_{B_d}\sqrt{B_{B_d}}}$ where the renormalization factors almost cancel out \Rightarrow renormalisation of effective theories very difficult problem: need to be carried out non-perturbatively!
- No unquenched calculation for B_2 , B_3 , B_4 , B_5 yet!

Non-perturbative renormalization of HQET operators

Palombi,Papinutto,Pena,Wittig, 2005-2007 + Dimopoulos,Herdoiza,Palombi,Papinutto,Pena,Vladikas,Wittig 2008

With Wilson-like fermions, using flavour exchange symmetry, parity, chiral symmetry, heavy quark spin symmetry and H(3) spatial rotations, the mixing pattern is:

$$\begin{pmatrix} \mathcal{O}_{1}' \\ \mathcal{O}_{2}' \\ \mathcal{O}_{4}' \\ \mathcal{O}_{5}' \end{pmatrix}_{\mathrm{R}} = \begin{pmatrix} \mathcal{Z}_{1} & 0 & 0 & 0 \\ 0 & \mathcal{Z}_{2} & 0 & 0 \\ 0 & 0 & \mathcal{Z}_{4} & 0 \\ 0 & 0 & 0 & \mathcal{Z}_{5} \end{pmatrix} \begin{bmatrix} 1 + \begin{pmatrix} 0 & 0 & \mathcal{A}_{1} & 0 \\ 0 & 0 & 0 & \mathcal{A}_{2} \\ \mathcal{A}_{4} & 0 & 0 & 0 \\ 0 & \mathcal{A}_{5} & 0 & 0 \end{pmatrix} \end{bmatrix} \begin{pmatrix} \mathcal{O}_{1}' \\ \mathcal{O}_{2}' \\ \mathcal{O}_{4}' \\ \mathcal{O}_{5}' \end{pmatrix}$$

time reversal $\Rightarrow \square_k = 0$ while $\Delta_k \neq 0$.

Strategy: use twisted mass QCD for the light quarks (with angle $\pi/2$). In this way $[O'_k]^{\text{QCD}}_{\text{R}} = \mathcal{Z}_k[\mathcal{O}'_k]^{\text{tmQCD}}$ the operators renormalize multiplicatively.

We use the Schrödinger functional: 4 dim. box with periodic boundary conds. in space and Dirichlet boundary conds. in time \rightarrow gap in the spectrum of the Dirac op.

 \rightarrow work directly at vanishing quark mass: naturally define a mass-independent renormalization scheme. $\mu = 1/L$, the inverse linear size of the box

We have computed non-perturbatively the renormalization constants $\mathcal{Z}_k(g, a\mu)$ with $N_f = 0$ and $N_f = 2$ dynamical flavors:

The computation requires the following ingredients:

- 1. perturbative calculation of the NLO anomalous dimension for the complete basis of static four-fermion operators in the SF scheme.
- 2. step-scaling function (SSF) $\sigma_k(u)$ in the continuum (in the SF scheme). Fixing the renormalized coupling $u \equiv \bar{g}^2(\mu)$ corresponds to fixing the renormalization scale $\mu = 1/L$.

$$\sigma_k(u) = U_k(\mu, \mu/2) = \frac{\hat{c}_k(\mu/2)}{\hat{c}_k(\mu)} = \lim_{a \to 0} \frac{\mathcal{Z}_k(g_0, a\mu/2)}{\mathcal{Z}_k(g_0, a\mu)} \Big|_{u \equiv \bar{g}^2(\mu)}^{m=0}$$

where $\hat{c}_k(\mu) = \left[\frac{\bar{g}^2(\mu)}{4\pi}\right]^{-\gamma_k^{(0)}/2b_0} \exp\left\{-\int_0^{\bar{g}(\mu)} dg\left(\frac{\gamma_k(g)}{\beta(g)} - \frac{\gamma_k^{(0)}}{b_0g}\right)\right\}$

together with $\sigma(u) = \bar{g}^2(\mu/2)$.

3. From the SSF we construct the non-perturbative RG evolution $U_k(\mu_{\rm pt}, \mu_{\rm had})$ with $\mu_{\rm pt} = 2^n \mu_{\rm had} \ (n = 8)$ (from $\mu_{\rm had} \approx 270 \,{\rm MeV}$ up to $\mu_{\rm pt} \approx 70 \,{\rm GeV}$):

$$U_{k}(2^{n}\mu_{\text{had}},\mu_{\text{had}}) = \left\{\prod_{i=0}^{n-1}\sigma_{k}(u_{i})\right\}^{-1}, \qquad u_{i} = \bar{g}^{2}(2^{(i+1)}\mu_{\text{had}})$$

- 4. the matching factor $\mathcal{Z}_k(g_0, a\mu_{had})$ at the low hadronic scale μ_{had} .
- 5. the RGI renormalization constant

 $\hat{Z}_{k,\mathrm{RGI}}(g_0) = \hat{c}_k(\mu_{\mathrm{had}})\mathcal{Z}_k(g_0, a\mu_{\mathrm{had}}) = \hat{c}_k(\mu_{\mathrm{pt}})U_k(\mu_{\mathrm{pt}}, \mu_{\mathrm{had}})\mathcal{Z}_k(g_0, a\mu_{\mathrm{had}})$

with $\hat{c}_k(\mu_{\rm pt})$ perturbative at NLO while $U_k(\mu_{\rm pt}, \mu_{\rm had})$ non-perturbative.

Statistical + sytematic uncertainty $\leq 2\%$ for $N_f = 0$ and $\leq 5\%$ for $N_f = 2$.

This opens the door to a fully non-perturbative computation of HQET matrix elements.

Mauro Papinutto, Università "La Sapienza", June '11/29

 $\Delta B = 2$ transitions in general SUSY model[Becirevic et al., 2002]

• Most general effective Hamiltonian for $\Delta B = 2$ processes beyond the SM:

$$\mathcal{H}_{\text{eff}}^{\Delta B=2} = \sum_{i=1}^{5} C_i Q_i + \sum_{i=1}^{3} \tilde{C}_i \tilde{Q}_i$$

 $(\tilde{Q}_i \text{ obtained from } Q_i \text{ by } (1 - \gamma_5) \leftrightarrow (1 + \gamma_5)).$

- Ingredients:
 - 1. Wilson cofficient at the scale of "new physics" (that we call M_S).
 - 2. Evolution from the scale M_S to the low energy scale (here we choose m_b) including NLO QCD corrections.
 - 3. matrix elements of the Q_i renormalized at the low energy scale m_b .

• Evolution from M_S to m_b including NLO QCD corrections:

$$C_{r}(m_{\rm b}) = \sum_{i} \sum_{s} (b_{i}^{(r,s)} + \eta c_{i}^{(r,s)}) \eta^{a_{i}} C_{s}(M_{S})$$

with $M_S \sim m_{\tilde{g}} \sim m_{\tilde{q}}$ and $\eta = \alpha_s(M_S)/\alpha_s(m_t)$.

- Δm_d and β can be computed for any model of new physics in which the new contributions with respect to the SM originate from extra heavy particles.
- Just plug in the expression for $C_i(M_S)$ evaluated in such a model.
- When $O(\alpha_s)$ corrections to the $C_i(M_S)$ are not available, results contain a residual systematic uncertainty of order $\alpha(M_S)$.

- Example: MSSM with gluino-mediated FCNC. Except for specific models where charginos, stops and/or charged Higgs are relatively light and contribute significantly to FCNC, this should be sufficient to get the correct bulk of SUSY contributions.
- Computation performed in the mass insertion approximation. Super-CKM basis chosen so that genuine SUSY FC effects are exhibited by the non diagonal entries of the sfermion mass matrices Δ.
- Sfermion propagators expanded in powers of $\delta = \Delta^2/m_{\tilde{q}}^2 \ll 1$ and only the first term is kept. $m_{\tilde{q}} \in [0.25, 1]$ TeV average sfermion mass and $m_{\tilde{g}}/m_{\tilde{q}} \in [0.5, 2]$.

• Experimental information about Δm_d and $a_{J/\psi K_s} + \Delta B = 2$ matrix elements \Rightarrow upper bounds on the δ_{13} s. Similar study for Δm_K and ε gives bounds for the δ_{12} s. [M. Ciuchini *et al.*, '98]

Conclusions and outlook

- Lattice QCD essential tool to determine CKM parameters and to compute contributions from new physics.
- Increasing statistical accuracy of exp. measurements ⇒ better control over systematic uncertainties of theoretically predicted parameters very important:
 - 1. fully non-perturbative formulation of HQET (including matching with QCD) order by order in the $1/m_{\rm h}$ -expansion. Example: $M_{\rm b}$ at $O(1/m_{\rm h})$.
 - 2. alternative strategy: interpolation between relativistic results at $m_{\rm h}\approx m_{\rm c}$ and HQET results at leading order.
 - 3. non-perturbative renormalisation of $\Delta B = 2$ static operators performed \Rightarrow fully non-perturbative computation of B_B static to be started.
 - 4. dynamical simulation at small light quark mass (where contact with χ PT can be made) are now available. Very important for F_{B_d} and B_{B_d} .
 - 5. need to study further observables, e.g. $B \rightarrow \pi l \nu \Rightarrow$ extraction of $V_{\rm ub}$.