Neutron production for BNCT

PhD Elettrical and Information Engineering

Nicola Ferrara, Bari University

4 settembre 2023

INDEX

- 02. Set-up simulation
- Industrial facility
 with 4 MeV out, tags
 and BSA

- 03. Analysis
- Comparison of tags

 and spectral analysis
 of the neutrons

 produced
- 04. Conclusion
- Prototype under development, choice of lithium

Beryllium or
 Lithium target
 neutron

• 01. Introduction

production, and

moderation for

clinical use in BNCT

- Thermal Neutron (0.025 eV) react with ¹⁰B with 3840 barn of cross section
- Boron is fluxed inside tumor zone with drugs

$$^{10}\text{B} + \text{n}$$
 $^{7}\text{Li} + \alpha + 2.79 \text{ MeV}$ (6.1%)
 $^{7}\text{Li} + \alpha + 2.31 \text{ MeV}$ (93.9%)
 $^{7}\text{Li} + \gamma + 0.478 \text{ MeV}$.

Advantages

- 1. Localized treatment
- 2. Metastatic lesion terapy

Disadvantages

- 1. Boron localization not easy
- 2. Very difficult collimation and selection of epithermal neutrons

Neutron source for BNCT

- 1. Nuclear Reactors
- 2. Accelerators

Neutrons for treatment have energy range from thermal to epithermal, from 25meV to 0.5 eV, and from 0.5 eV to 10 keV.

Use of reactor is not feasible into a hospital centre.

Accelerator could be compact and modular, and very less radiation impactant.

NEUTRON PRODUCTION

Lithium and Beryllium have highest cross section:

- 1. p(9Be,9B)n
- 2. p(⁷Li, ⁷Be)n

Conversion efficiency:

- 1. 1*10 12 n*mC-1
- 2. 9.8 * 10 11 n*mC -1
- (2) Juan Esposito

ACCELERATOR-DRIVEN SYSTEM:

In order to produce thermal neutrons needs to moderate them with a moderator

BSA:

- 1. Moderator:
 - Thermal: polyethylene
 - Epithermal: AIF3 , AI, MgF2, CaF2
- 2. Filter:
 - Thermal: Pb
 - Epithermal: 7LiF
- 3. Collimator: polyethylene (external with boron)
- 4. Reflector: Pb

Set-up simulation

protonterapy facility

Linearbeam s.r.l. Linac: 4 MeV +/- 50 keV Radiofrequecy cavity: 15 V/m Quadrupole: 180 T/m

Current: 15 uA mean Peak: 2 mA 5 * 10 11 p/s 1,6* 10 -13 uC 8 * 10 -2 uC/s

TARGET Slice of Lithium or Berillium Size: 8 cm * 8 cm * 0.04 cm Slice of Vanadium for stopping protons

At these energies the range exceeds the thickness of the target and a thickness of high density material is postponed.

Be

Set-up simulation

BEAM SHAPING ASSEMBLY for thermal neutrons only with polyethylene as first example Size: 20 cm * lunghezza 40 cm

PHYSICS LIST: QGSP_BIC_AllHP – Physics List for neutrons

GEANT4 v10.7 Implementata la classe di Stepping Actions per ottenere neutroni prodotti e uscenti dal target

Stepsize implementation for Bragg Peak simulation

Reflector: violet

Moderator: red

Filter: green

Barrell collimator: mustard

End-cap collimator: cyan

Analysis at 6 MeV

Analysis at 6 MeV

Beryllium

Lithium

Analysis at 6 MeV

Lithium

)3/09/2023

Analysis at 4 MeV

Analisi per target con 4 MeV

Analysis for Lithium at 4 MeV

Lithium

Lithium target better than Beryllium

03/04/03

Analysis

THERMAL BSA

Polyethylene BSA with 4 MeV for thermal neutrons: left, thermal neutrons produced without BSA, right upper shift properties of Polyethylene BSA for thermal neutrons, right bottom, angle spectral properties

Neutrons Energy in cone no normalized

Energy (MeV)

EPITHERMAL BSA

Yield is an order of magnitude smaller, but BSA collimation works well in forward direction

Conclusion

The ideal target for the facility is
Lithium with a thickness of 400um.
For BSA the ideal moderator for a
beam of thermal neutrons is
polyethylene, while for epithermal
beam is MgF2, but an order of
magnitude of yield is lost.

Nicola Ferrara

n.ferrara2@phd.poliba.it

03/09/2023

17

Geometry of the simulation

- 1. Accelerator
- 2. Target
- 3. BSA
- 4. Bunker

Backup Berillio

4 MeV

Litio

