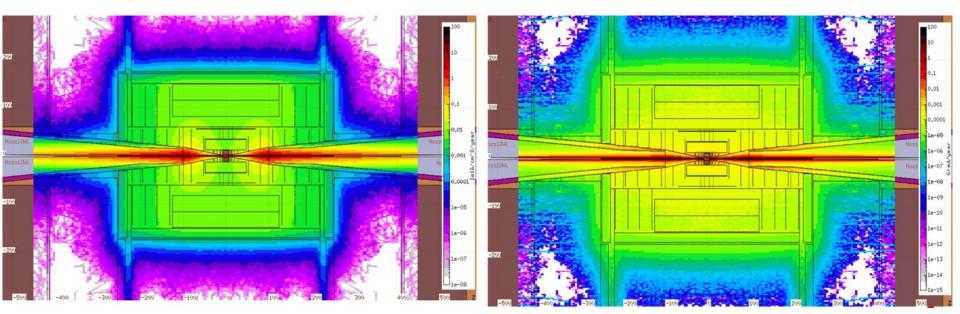
Roma – Referee – 4 settembre 2023

Tracking R&D plans (DRD3: LGAD - RSD - eXFlu) Simulation studies and R&D N. Bartosik, M. Casarsa, L. Sestini et al. Valentina Sola, Marco Ferrero et al.

UFSD group

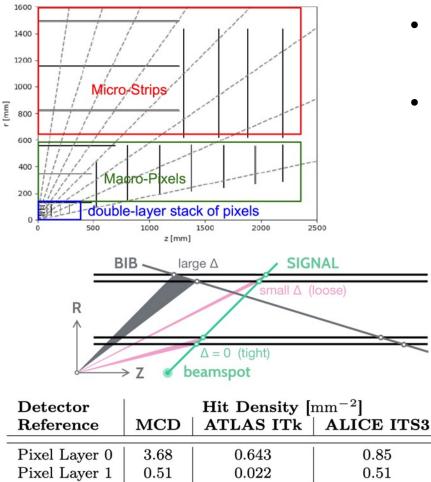
R. Arcidiacono; G. Borghi; M. Boscardin; **N. Cartiglia**; M. Centis Vignali; G-F Dalla Betta; M. Ferrero; F. Ficorella; L. Lanteri; L. Menzio; R. Mulargia; G. Paternoster; L. Pancheri; F. Siviero; V. Sola.

PRIN: A Compensated Design of Thin Silicon Sensors for Extreme Fluences – ComonSens PRIN: DC-RSD developments – 4D-Share 2022KLK4LB



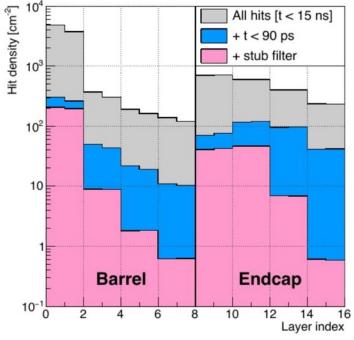
Radiation levels @ 1.5 TeV

1-MeV-neq fluence: one year (200 days) of operation Total Ionizing Dose: one year (200 days) of operation



	Maximum	Dose (Mrad)	Maximum Fluence (1 MeV-neq/e				
	R=22 mm	$R{=}1500~\mathrm{mm}$	R=22 mm	R=1500 mm			
Muon Collider	10	0.1	10^{15}	10^{14}			
HL-LHC	100	0.1	10^{15}	10^{13}			

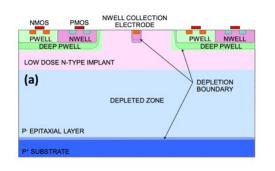
Radiation hardness requirements are pretty similar to what expected at HL-LHC


Tracker layout: design requirements

Baseline tracking geometry

Higher occupancies than LHC detectors are expected but 100 kHz crossing rate (MuC with single bunch) vs 40 MHz (LHC)

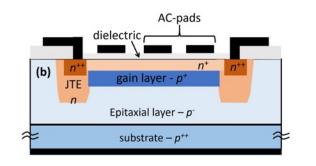
- **Timing**: to suppress out-of-time BIB hits
- **Directional information**: BIB does not come from the interaction point
- **Energy depositions**: pulse shape analysis for rejecting soft component



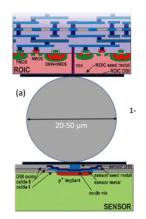
BIB suppression at 1.5 TeV

Sensors requirements

	Vertex Detector	Inner Tracker	Outer Tracker
Cell type	pixels	macropixels	microstrips
Cell Size	$25\mathrm{\mu m} imes 25\mathrm{\mu m}$	$50\mu\mathrm{m} imes 1\mathrm{mm}$	$50\mu{ m m} imes10{ m mm}$
Sensor Thickness	$50\mu{ m m}$	$100\mu{ m m}$	$100\mu{ m m}$
Time Resolution	$30\mathrm{ps}$	$60\mathrm{ps}$	$60\mathrm{ps}$
Spatial Resolution	$5\mu{ m m} imes 5\mu{ m m}$	$7\mu{ m m} imes90\mu{ m m}$	$7\mu{ m m} imes90\mu{ m m}$


Sinergy with timing sensors development for HL-LHC

Monolithic devices (CMOS):


Good timing and spacial resolution, radiation hardness to be improved

Promising technologies

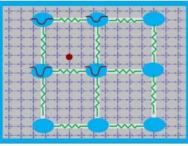
Low Gain Avalanche Detectors (LGAD):

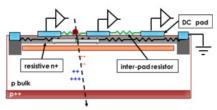
Large and fast signal (20-30 ps resolution), moderate radiation hardness

Hybrid small pixel devices:

No gain but fast timing (20-30 ps resolution) and good position resolution. Intrinsically radiation hard

LGAD sensors – DC-RSD


Sensori per Tracciamento in 4D

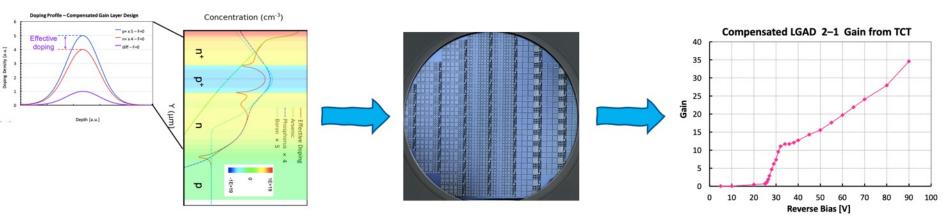

DC-coupled resistive readout in silicon sensors with internal gain: signal sharing for future 4D tracking

- Project goal: evolve the resistive AC-LGAD design, improving the performance and scalability to large devices
 - \rightarrow realization of DC-RSD sensors (DC-coupled Resistive Silicon Detectors)
- Key points: achieve controlled signal sharing in a predetermined number of pads and drain the device leakage current at every pixel

Current status and outlook of the project for 2024:

- 1. Completed first round of simulations for the device, using analytic modeling, SPICE and TCAD
- 2. Working on the process flow to manufacture DC-RSD: currently completing a few *short-loops* to acquire the necessary technical skills needed for DC-RSD
- 3. The first prototype run of DC-RSD should be submitted in summer
- 4. The production should be ready for extensive testing in Q1/24 (with subsequent irradiation)

LGAD sensors – eXFlu

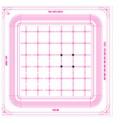

Sensori per Fluenze Estreme

Obbiettivo: Realizzare sensori sottili al silicio che operino fino a fluenze di $10^{17} n_{eq}/cm^2$

- Misurare le proprietà dei sensori al silicio a fluenze superiori a 10¹⁶ n_{eq}/cm²
- Disegnare e produrre sensori planari con guadagno in grado di operare a fluenze di 10¹⁶ 10¹⁷ n_{eq}/cm²

Produzione di sensori al silicio

- ► La prima produzione di sensori LGAD con gain implant p-n compensato
 - ightarrow produzione di sensori completata a fine 2022, ora in fase di caratterizzazione e irraggiamento

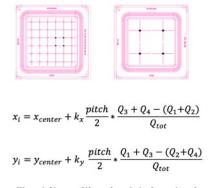


LGAD sensors design and production

There is a strong coordinated effort – now in DRD3 to develop sensors by experts to:

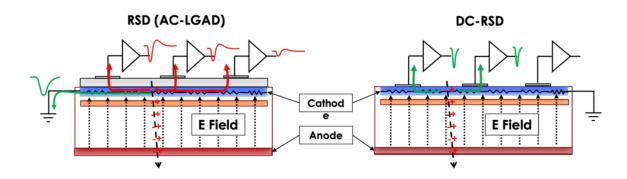
- improve performances
- face high radiation environment

FBK-RSD2, two geometries4 electrodes, 1300 x 1300 um²36 electrodes, 450 x 450 um²



FBK-DC0 (in the ExFlu production) 4 electrodes, 900 x 900 um²

Study of RSD2: summary of past results (TCT)


- The hit position is obtained using charge imbalance
- The resolution is defined as the difference between the laser and the reconstructed position

RSD2 Crosses: spatial resolution for 4 different pixel pitches 100 -+-- 1300 um 90 +-450 um 80 ▲ - 340 um 70 - = - 200 um Resolution [um] 60 50 40 30 20 10 0 0 20 60 100 120 140 160 Sum of 4 amplitudes [mV]

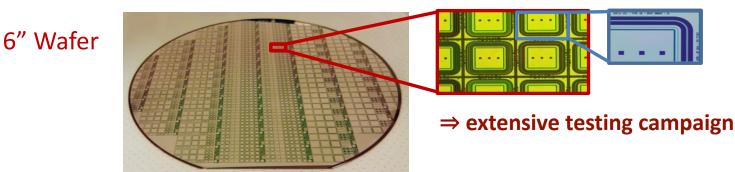
Lab tests Irradiation Test beam Planned and on-going

LGAD sensors: $RSD \rightarrow DC$ -RSD and eXFlu

RSD vs DC-RSD

This design has been manufactured in several productions by FBK, BNL, and HPK

This design is presently under development by FBK The main advantage of the DC-RSD design is the ability to control the signal spread


A new production of thin LGAD is now released by the FBK foundry \Rightarrow EXFLU1

different innovation strategies to extend the radiation tolerance up to the extreme fluences:

▷ carbon shield

▷ compensation

- new guard ring design
- $\,\triangleright\,$ thin substrates (15–45 $\mu m)$

RD_MUCOL: strategy and plan

STRATEGY:

- select the most promising sensor technology for the detector @ 3 and 10 TeV
 ⇒ new baseline design in 2-3 years
- simulation studies on detector performances
- participation to lab and test beam campaigns to optimize sensor/electronics design

PLAN:

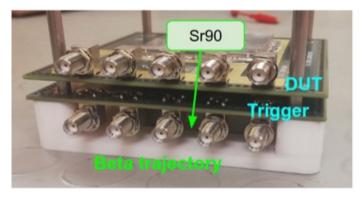
- Contribute to the sensor read-out and set-up for laboratory and test-beam
- A new neo-laurea student will work almost full time for 1 year starting mid Sept.

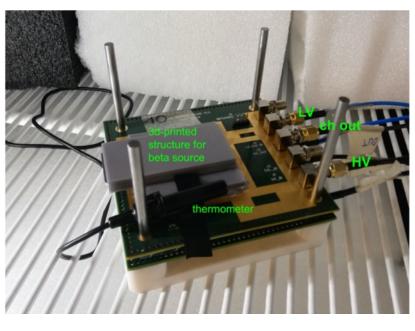
2023

The TCT (second unit) was not ordered since it requires dedicated personnel. Instead:

- Four-Fold Programmable Logic Unit \Rightarrow in the lab
- RSD new electronics multichannel read-out boards ⇒ order to be finalized

RD_MUCOL: plan 2024++ – DRD3


PLAN:

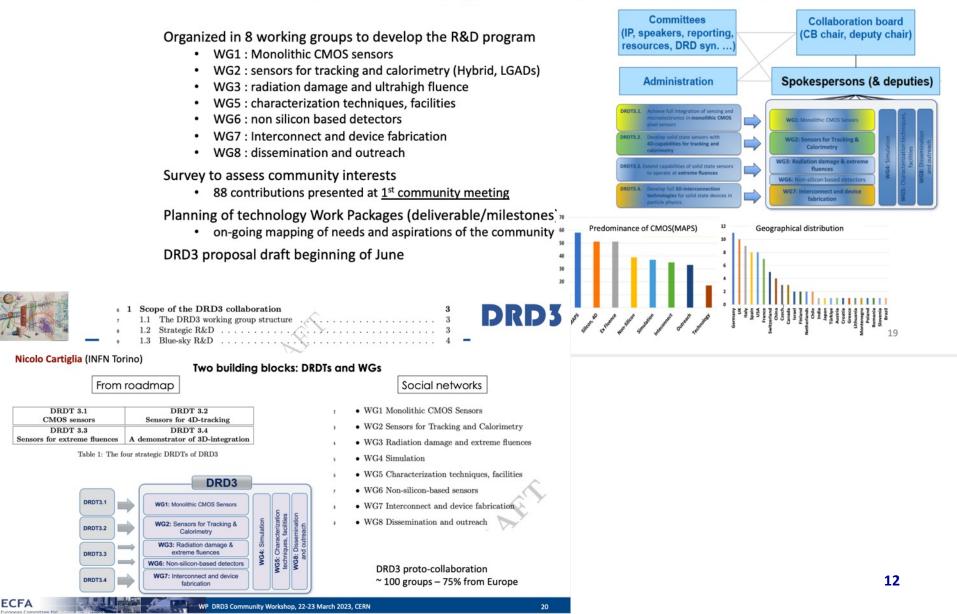

- Contribute to the sensor read-out and set-up for laboratory and test-beam
- A new neo-laurea student will work almost full time for 1 year starting mid Sept.

2024

- 30 read-out boards single channel timing characterization
 6 keu
- 1 MCP-PMT time measurement on test beam 15 keu
- 1 Newport x-y movement axis 50 cm for test beam 25 keu
- Participation to lab measurements and test beams
- **2025** \Rightarrow to be considered a possible contribution to sensor production
- Consumables ~ 25 keu
- Participation to lab measurements and test beams
- **2026** \Rightarrow to be considered a possible contribution to sensor production
- Consumables ~ 25 keu
- Participation to lab measurements and test beams

Single channel read-out board

Test beam set-up



DRD3

DRD3 Solid State Detectors program

& community building status

conveners: Nicolo Cartiglia, Giulio Pellegrini, 484 people registered

DRD3

Implementation of the DRD3 mandate

Stra	Strategic R&D via Work Packa	wG1,	8	DRDT:		3. DM/			3.2 4D Trackin		3.3 Extreme Fluence	3.4 Intercon.
	ntified by technology		DRD3 approval	Workpackage:	TPSCo 65 nm owerJazz 180 nm	E	TSI 180 nm Foundry 110 nm	IHP 130 nm	an an	-	Diamond	Wide Bandgap 3D-integration
	WP1	WP2 WP3 WP4 WPn Strategic R&D	CP1 CPn Blue Sky R&D	MS Description 1.1 Spatial resolution: speci- fication of 3 μm position reso- lution 1.2 Timing resolution: specific- cation of 20 ps timing precision 1.3 Readout architectures for 100 MHz/cm ² 1.4 Radiation tolerance: spec-								
Pro	Work package WP 3.1: TPSCo 65 nm WP 3.2: TowerJazz 180 nm	Goal	Blue sky R&D via common project, approved by the DRD3	$\label{eq:response} \begin{array}{l} \text{if fication of } 10^{16}\mathrm{m_{en}}/\mathrm{cm^2}\mathrm{NIEL}\\ \text{and 500 MRad.} \end{array} \\ \hline \begin{array}{c} 2.11 & \mathrm{Reduction of \ pixel \ cell}\\ \text{size for 3D \ sensors \ for \ timing \ (50 \times 50\ \mathrm{ps})\\ 2.3\ \mathrm{IGAD}\mathrm{for \ 4D\ tracking \ <}\\ 2.43\ \mathrm{IGAD}\mathrm{for \ 4D\ tracking \ <}\\ 10\ \mathrm{um}, < 30\ \mathrm{ps}, \ \mathrm{wafer}\ 6^\circ \ \mathrm{and} \ 8^\circ \end{array}$		8	<u></u>	X	x x x	c		
	WP 3.3: LFoundry 150 nm WP 3.4: TSI 180 nm WP 3.5: LFoundry 110 nm WP 3.6: IHP 130 nm WP 3.7 3D sensors			2.4 RSD for ToF (Large area, < 30 um, < 30 ps 3.1 Build up data sets on radiation-induced defect for- mation in WBG materials 3.2 Develop silicon radiation damage models based on mes- sured point and cluster defects		<u>}</u>			x	x	x	x
Formi	WP 3.8 LGAD WP 3.9: Wide bandgap (SiC, GaN) WP 3.10: Diamond WP 3.11: Silicon			 3.3 Provide measurements and detector radiation dam- age models for radiation levels faced in HL-LHC operation 3.4 Measure and model the properties of silicon and WBG sensors in the fluence range 10⁶ to 10⁸ m₀cm⁻² 					x x	x	x	
Formi		ORD3 work packages WP DRD3 Com	munity Workshop, 22-23 March 202	Table 18: 3	fapping	of DR	DTs, WI	Ps, and	Milest	tones		21
11 Path to the DRD3 collabor		32										

- 38
 11.1 Funding for DRD3 strategic R&D
 33
- 39
 11.2 Funding for DRD3 blue-sky R&D
 33

 40
 11.3 Funding for DRD3 operation
 33

Shortly, we will send a new questionnaire to the community.

This questionnaire will ask to indicate to which Milestones each group is interested and with what resources.

- The most considerable interplay is with DRD7 (electronics), on the field of DMAPS
- Presently, there is no DRD3 group that has expressed interest in silicon for calorimetry. We still need to develop this field
- Industry: the present plan is to collaborate with industry in the same way we did in RD50