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The way of ML

(xi, yi)ni=1 f : X → R

a) fw, w ∈ Rp model

b) ŵ = arg minw
∑n/2
i=1(yi − fw(xi))2 fit

c)
∑n
i=n/2+1(yi − fŵ(xi))2 test
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The way of ML

(xi, yi)ni=1 f : X → R

a) fw, w ∈ Rp, n << p model

b) ŵ = arg minw
∑n/2
i=1(yi − fw(xi))2≈ 0 fit

c)
∑n
i=n/2+1(yi − fŵ(xi))2 test

With four parameters I can fit an elephant, and with five I can make him wiggle his trunk?
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Outline

1 Machine learning with kernels

2 Large scale machine learning with kernels

3 Discovering anomalies with kernels
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Models

Linear models
fw(x) = 〈w, x〉.

Perceptron and neural nets

fw(x) = σ(〈w, x〉), fw(x) =
u∑
j=1

ciσ(〈aj , x〉).

Kernel methods
fw(x) = 〈w,Φ(x)〉.
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Just a trick!
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Kernel methods for adults

Reproducing kernel Hilbert space (RKHS) [Aronzajn ’50]
H ⊂ RX Hilbert space with a reproducing kernel ∃ k : X × X → R such that

for all x ∈ X ,
kx = k(x, ·) ∈ H,

for all x ∈ X , f ∈ H,
f(x) = 〈f, kx〉H

.

Examples with X ⊂ Rd

Band limited functions, → k(x, x′) = sinc(x− x′)
Analytic functions, → k(x, x′) = e−‖x−x

′‖2

Sobolev spaces W s,2(Rd), s = 2d → k(x, x′) = e−‖x−x
′‖
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Fitting with kernels

f̂λ = arg min
f∈H

1
n

n∑
i=1

(yi − f(xi))2 + λ‖f‖2
H

Theorem [Kimeldorf, Wahba, ’70]

f̂λ(x) =
n∑
i=1

k(x, xi)ĉi, ĉi ∈ R

ĉ = (K̂ + λI)−1ŷ K̂ij = k(xi, xj) ŷ = [y1, . . . , yn]

Time complexity: O(n3) Space complexity: O(n2)
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Testing with kernels

L(f) =
∫

(y − f(x))2dP (x, y)

P probability on (X × R) s.t. (xi, yi, )ni=1 ∼ Pn.

Theorem [Caponnetto, De Vito, ’07]

If k(x, x′) ≤ 1, y ≤M a.s. and ∃fH ∈ H s.t. L(fH) = minf∈H L(f).

Then, choosing λ = 1√
n

E[L(f̂λ)− L(fH)] . 1√
n
.
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Remarks

History. 1970. 2000. Now.

No feature learning .

Scaling issues.
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Models for large scale kernel methods

Random Features [Rahimi, Recht ’08]

zi ∈ Rm such that 〈zi, zj〉Rm ≈ k(xi, xj)

Random subspaces (aka Nyström method/inducing points) [Williams, Seeger ’00]

Hm = span{kx̃1 , . . . , kx̃m
} ⊂ H {x̃1, . . . , x̃m} ⊂ {x1, . . . , xn}

12



Fitting large scale kernel methods

f̂λ,m = arg min
f∈Hm

1
n

n∑
i=1

(yi − f(xi))2 + λ‖f‖2
Hm

Theorem [Williams, Seeger ’00]

f̂λ,m =
m∑
i=1

k(·, x̃i)ĉi, ĉi ∈ R

ĉ = (K̂>nmK̂nm + λK̂mm)−1K̂>nmŷ

K̂

K̂mm

K̂nm

Time complexity: O(n2 +m3) Space complexity: O(nm)
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Testing large scale kernel methods

L(f) =
∫

(y − f(x))2dP (x, y)

Theorem [Rudi, Camoriano, Rosasco, ’16]

If k(x, x′) ≤ 1, y ≤M a.s. and ∃fH ∈ H s.t. L(fH) = minf∈H L(f).

Then, with λ = 1√
n

and m &
√
n

E[L(f̂λ,m)− L(fH)] . 1√
n
.
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Going faster with randomized linear algebra

βt = βt−1 + τ

n
B>[K̂>nm(K̂nmBβt−1 − ŷ) + nλK̂mmBβt−1] ct = Bβt

a) Iterative solvers (e.g. Gradient descent, bonjugate gradient)
b) Condition number and preconditioning

κ = σmax(K̂>nmK̂nm + λK̂mm)
σmin(K̂>nmK̂nm + λK̂mm)

c) Compressed preconditioningt

BB> = ( n
m
K̂2
mm + λK̂mm)−1

[“FALKON: An Optimal Large Scale Kernel Method”, Rudi, Carratino, Rosasco, 2018]
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Falkon Software

Memory
preconditioner
matrix-vector products
low precision floats

GPU
out-of-core operations
multi-GPU support

Communications
Optimized memory transfers

20× Improvement
over strong baseline

[“Kernel methods through the roof”, M., Carratino, Rosasco, Rudi, 2020]
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Falkon Experiments

104 – 105 points in seconds
106 – 107 points in minutes
108 – 109 points in hours

[“Kernel methods through the roof”, M., Carratino, Rosasco, Rudi, 2020]
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Anomalies aka new physics

c© Andrew Hara
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A model free approach to anomalies I

Data
x1, . . . , xM ∼ Pmother nature.

Model
x1, . . . , xN ∼ Pmodel.

Idea: binary classification

NATURE vs MODEL

But the model is good =⇒ ”Accuracy= 50.5%”.
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A model free approach to anomalies II
Is Accuracy=≈ 50, 5% significant?

Permutation test.
. . .
Exploit physics

x1, . . . , xM ∼ Pmodel.

x1, . . . , xN ∼ Pmodel.

Get null distribution classifying

MODEL vs MODEL
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Some results
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Wrap up

Kernel method can run on millions/billions points.
Great model for intermediate dimensions.
HeP a natural test bed? New physics, data quality monitoring, generative modeling
quality. . . (SEE Marco Letizia’s TALK)

Ongoing
Not just supervised learning: physics informed ML, dynamical systems.
Kernel design/learning?

(Come work @MaLGa– DM for info)
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