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Introduction

» Significant advances in jet tagging with wide application of ML

» Supervised learning model: strong performance while limited by labelled dataset
» We propose a new method to learn jet representations through self-supervision
» Applications to jet tagging and anomaly detection

» Outlook of future development
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https://medium.com/@raosrinivas2580?source=post_page-----8ef2b9411b81--------------------------------

Exploit the information to assign correct jet label (Hbb/Hcc/tbgag/...)

Focus on boosted jet reconstructed with PFlow algo

Input: large-R jet composed of particles

Amazing development over years:

ParticleNet, Particle Transformer, LundNet, PELICAN, OmniLearn, Sophon and many more!

Common feature: trained from the labelled dataset

Physics modelling, data-MC difference and statistics

Ad

€54 Relative Uncertainty [%]

80

- ATLAS Simulation

70 V5=13 TeV, Pythia8

anti-k; R=1.0 UFO C
60— ParticleNet, £5g=0.5

SSK Jets

* 4 0

—— Total

Background Modeling ]
% Track 7
. J

500 1000 1500

2000 2500 30'00—
Large-R Jet pr [GeV]

Recall nice talks these days!
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Can we learn from data?

The self-supervised learning (SSL)



Self-supervised learning

» Physics knowledge embedded in jet even w/o label

Color connection, hadronization, detector effect, ...

» Self-supervised way to learn from unlabeled jet

SImCLR, JetCLR (AD), AnomalyCLR, DarkCLR, RS3L, ...
Masked Particle Modelling
OmnilJet-a

» Jet representation shared between various applications

Jet reconstruction, tagging, generation, anomaly detection, ...
—> Bridge to the foundation jet model
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Designs of self-supervised learning

» a) Contrastive: min- or maximize the distance between representation of jet pair
» b) Generative: generate partial or the full jet
>

c) Predictive: complete the jet representation

Easy to train: no need to build pair or generate in physics space
Flexible to extend: handle any kind of jet input (more than kinematics)
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How to make it?

Implementation of the p-jepa network



Particle Joint-Embedding Predictive Architecture
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>>> Particle masking: the “question maker”
Masked

» Building blocks of a jet: particles
Kinematics (4-vec), PID, charge, track information
Correlation info, e.g. pairwise features and substructure

» Can ML learn to predict masked particles?

Randomly masking ~30% of particles in a jet
The remaining particles provide “context” information
Trying to recover the masked particles ("target") from the context

- Learn meaningful jet representations

Original



>>> Encoder: representing the context

Particles =

Interactions —»

L blocks
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» Build on Particle attention block[1]

» Self-Attention

Extract information from particles

» Generalize to all particle info

Kinematics, charge, PID, track, etc



>>> Predictor: the “question solver”

» Predict partial jet representation

Corresponding to the masked particles

» Smooth L1 loss

Measure how close the predicted particles are to the
truth in the representation space

» Encoder and predictor trained simultaneously

- Aim to learn meaningful jet representation
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Does this work?

Experiments and Preliminary Results



Pre-training and Transfer Learning

» Physics performance evaluated with pre-training + transfer learning pipeline:

» Foundation p-jepa model pre-trained on “data”

From JetClass-II: AntiKt(R=0.8), DELPHES simulation and realistic pileup effect (mu=50)
Composition emulated the real data (QCD >70% of training data, others follow cross-section)

» Transfer learning to specific task r

Different downstream models share the same encoder (jet representation) o
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https://arxiv.org/abs/2405.12972v1

Application: Jet Tagging

» Few-shot transfer learning for jet tagging:
10-class(*) classification on JetClass-I: different dataset with pre-train (no PU effect and balanced class)
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https://zenodo.org/records/6619768

Application: Jet Tagging

» Few-shot transfer learning for jet tagging:
10-class(*) classification on JetClass-I: different dataset with pre-train (no PU effect and balanced class)
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Application: Anomaly Detection

» Test the pre-trained jet representations on anomaly detection
Model independent search for new physics signals

Weakly supervised classification

Jet encode
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Boost the discovery

Share same framework of AD study in Sophon [2405.12972], originated from CWola [1708.02949]



Application: Anomaly Detection

» AD Significance enhanced using p-jepa:

More visible after transfer learning on labeled jets

» Work in progress to reduce the gap with supervised way (e.g. Sophon)
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Proposed P-JEPA architecture for self-supervised learning on jets
Jet representation learned from unlabeled data

Performance tested on jet tagging and anomaly detection

More applications in progress -- stay tuned!

Take-away:
Learning from jet without label is possible
Joint-predictive architecture shows promising performance

If data itself provides the knowledge, why not take it?
B OS |A O the new physics search in a self-supervised way!



Backups
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Application: Anomaly Detection

» AD Significance enhanced using p-jepa:

More visible after transfer learning on labeled jets

» Work in progress to reduce the gap with supervised way (e.g. Sophon)
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