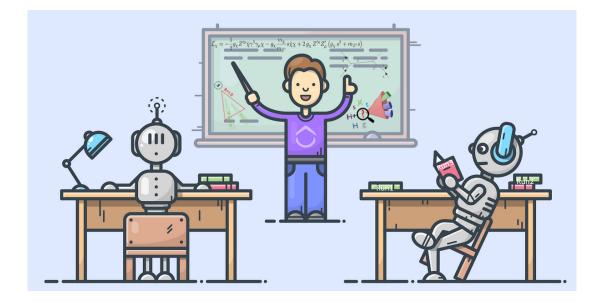


Learning powerful jet representations via self-supervision

Qibin LIU, Shudong Wang, Congqiao Li, Huilin Qu

Introduction

- > Significant advances in jet tagging with wide application of ML
- > Supervised learning model: strong performance while limited by labelled dataset
- > We propose a new method to learn jet representations through self-supervision
- > Applications to jet tagging and anomaly detection
- > Outlook of future development

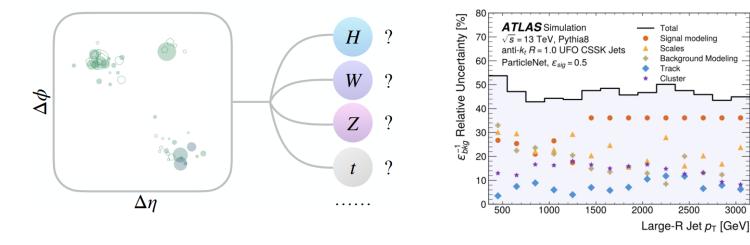


Plot modified from @Srinivas Rao

ML-based Jet tagging: the supervised way

- > Exploit the information to assign correct jet label (Hbb/Hcc/tbqq/...)
- Focus on boosted jet reconstructed with PFlow algo
 - Input: large-R jet composed of particles
- > Amazing development over years:
 - ParticleNet, Particle Transformer, LundNet, PELICAN, OmniLearn, Sophon and many more!
- > Common feature: trained from the **labelled dataset**

Physics modelling, data-MC difference and statistics



Recall nice talks these days!

<u>Plot taken from 2202.03772, CERN-EP-2024-159</u>

Can we learn from data?

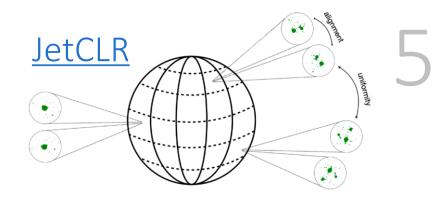
The self-supervised learning (SSL)

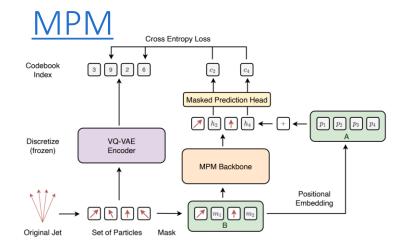
Self-supervised learning

Physics knowledge embedded in jet even w/o label Color connection, hadronization, detector effect, ...

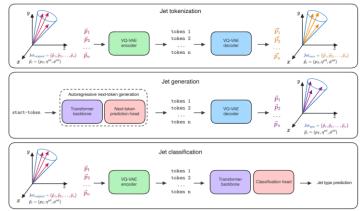
Self-supervised way to learn from unlabeled jet <u>SimCLR, JetCLR (AD), AnomalyCLR, DarkCLR, RS3L, ...</u> <u>Masked Particle Modelling</u> <u>OmniJet-α</u>

Jet representation shared between various applications
Jet reconstruction, tagging, generation, anomaly detection, ...
Bridge to the foundation jet model





<u>OmniJet-α</u>

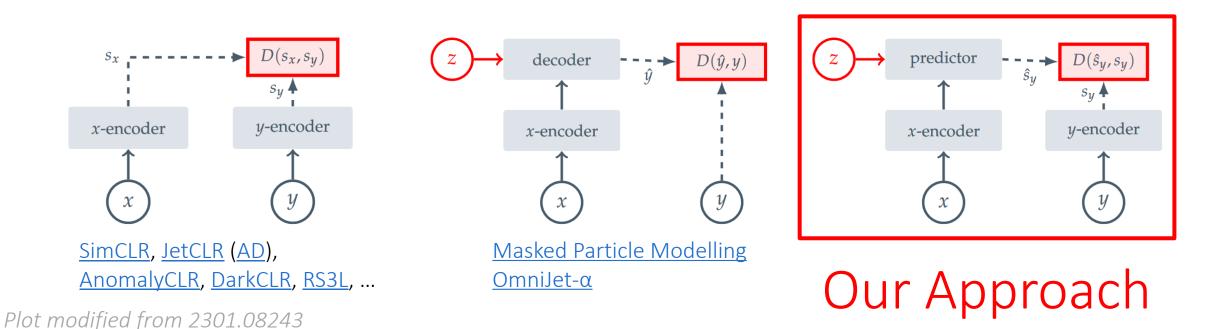


Designs of self-supervised learning

> a) Contrastive: min- or maximize the distance between representation of jet pair

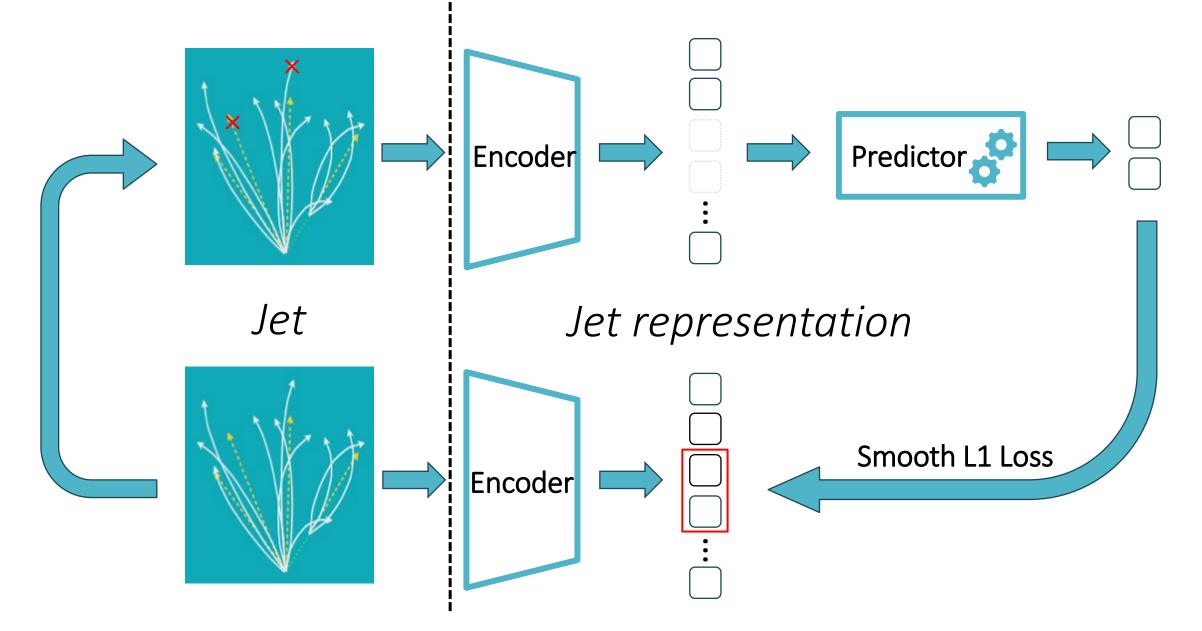
- > b) Generative: generate partial or the full jet
- > c) Predictive: complete the jet representation

Easy to train: no need to build pair or generate in physics space Flexible to extend: handle any kind of jet input (more than kinematics)

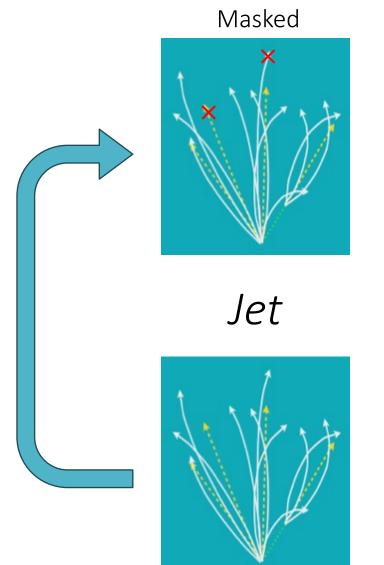


Implementation of the p-jepa network

Particle Joint-Embedding Predictive Architecture



>>> Particle masking: the "question maker"

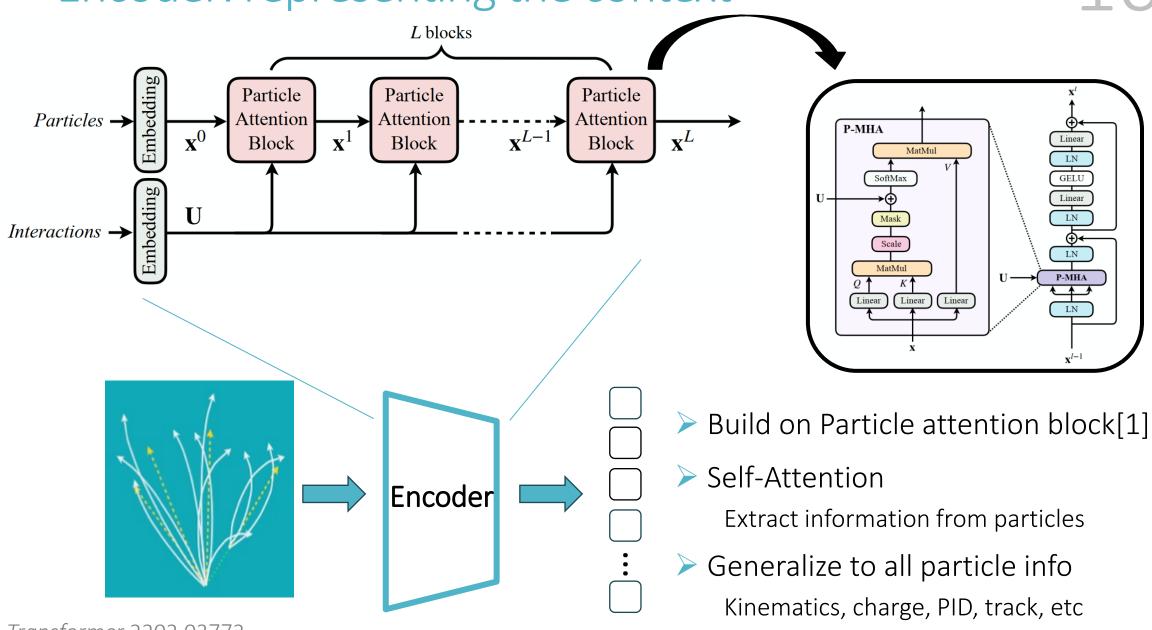


Original

Building blocks of a jet: particles Kinematics (4-vec), PID, charge, track information Correlation info, e.g. pairwise features and substructure

Can ML learn to predict masked particles?
Randomly masking ~30% of particles in a jet
The remaining particles provide "context" information
Trying to recover the masked particles ("target") from the context
→ Learn meaningful jet representations

>>> Encoder: representing the context



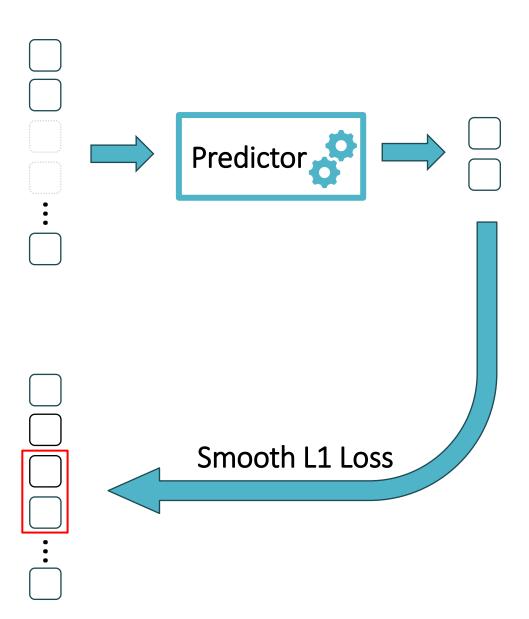
[1] Particle Transformer 2202.03772

>>> Predictor: the "question solver"

- Predict partial jet representation Corresponding to the masked particles
- Smooth L1 loss

Measure how close the predicted particles are to the truth in the representation space

Encoder and predictor trained simultaneously
Aim to learn meaningful jet representation



12

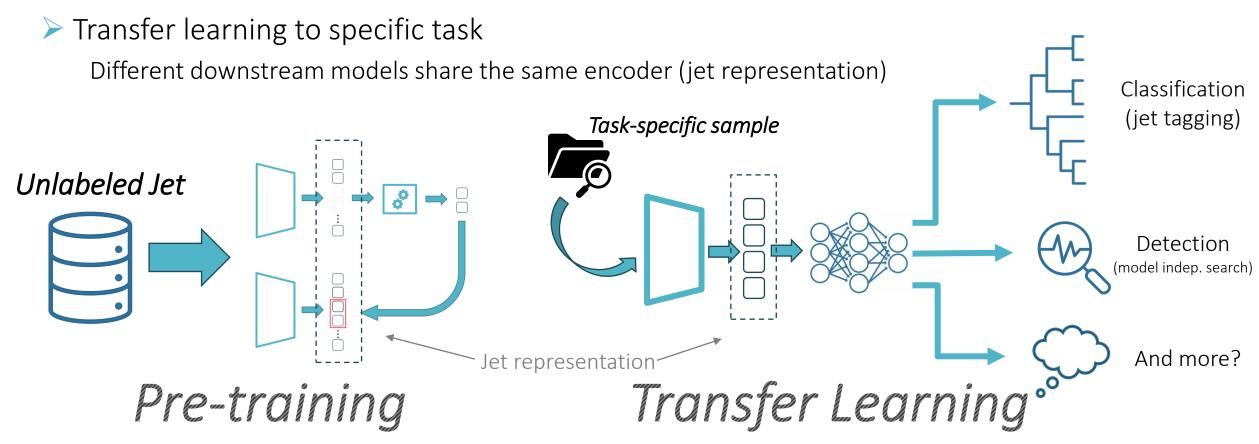
Does this work?

Experiments and Preliminary Results

Pre-training and Transfer Learning

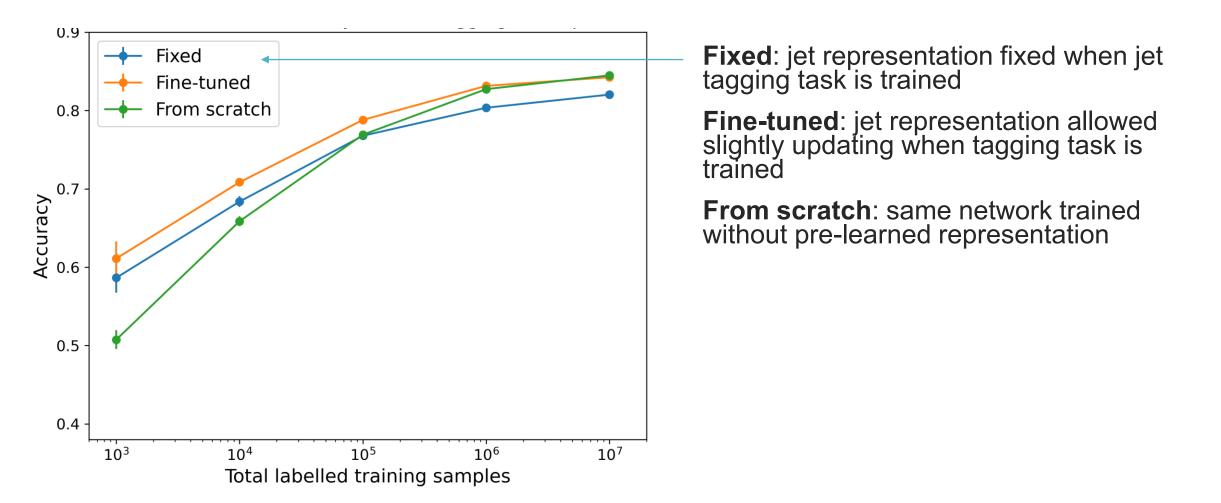
> Physics performance evaluated with pre-training + transfer learning pipeline:

Foundation p-jepa model pre-trained on "data" From <u>JetClass-II</u>: AntiKt(R=0.8), DELPHES simulation and realistic pileup effect (mu=50) Composition emulated the real data (QCD >70% of training data, others follow cross-section)



Application: Jet Tagging

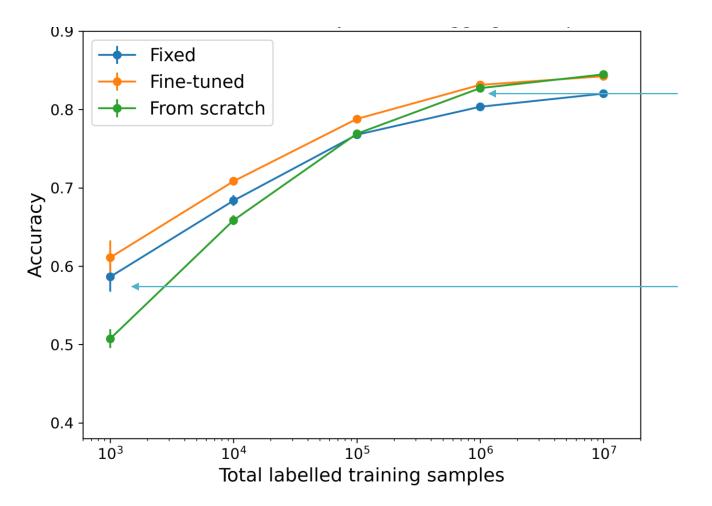
Few-shot transfer learning for jet tagging: 10-class(*) classification on <u>JetClass-I</u>: different dataset with pre-train (no PU effect and balanced class)



*: $H(bb)/H(cc)/H(gg)/H(4q)/H(lvqq')/t(bqq')/t(blv)/W(qq')/Z(q\bar{q})/QCD$

Application: Jet Tagging

Few-shot transfer learning for jet tagging: 10-class(*) classification on <u>JetClass-I</u>: different dataset with pre-train (no PU effect and balanced class)



From scratch training takes over when the labelled dataset is large enough

 \rightarrow reduce to fully-supervised jet tagging

Pre-training + transfer learning gives a significant performance boost with very limited number of labelled samples (as lower as 100 jet/class)!

→ Benefit from jet rep. learned in SSL

*: $H(bb)/H(cc)/H(gg)/H(4q)/H(lvqq')/t(bqq')/t(blv)/W(qq')/Z(q\bar{q})/QCD$

Application: Anomaly Detection

Test the pre-trained jet representations on anomaly detection Model independent search for new physics signals

Mixed Sample 1 Mixed Sample 2 Significance (naive) Cut of classifier output <mark>s b b b s</mark> BBB<mark>S</mark>B S)(**(S) S)**(B) (B) 5σ В simple selection S)(S)(S)(S (S)(B (B) (s)(s)(s)(s) <mark>S)(S)(B)(B)(B</mark>) N_signal Classifier Boost the discovery Jet encode

Weakly supervised classification

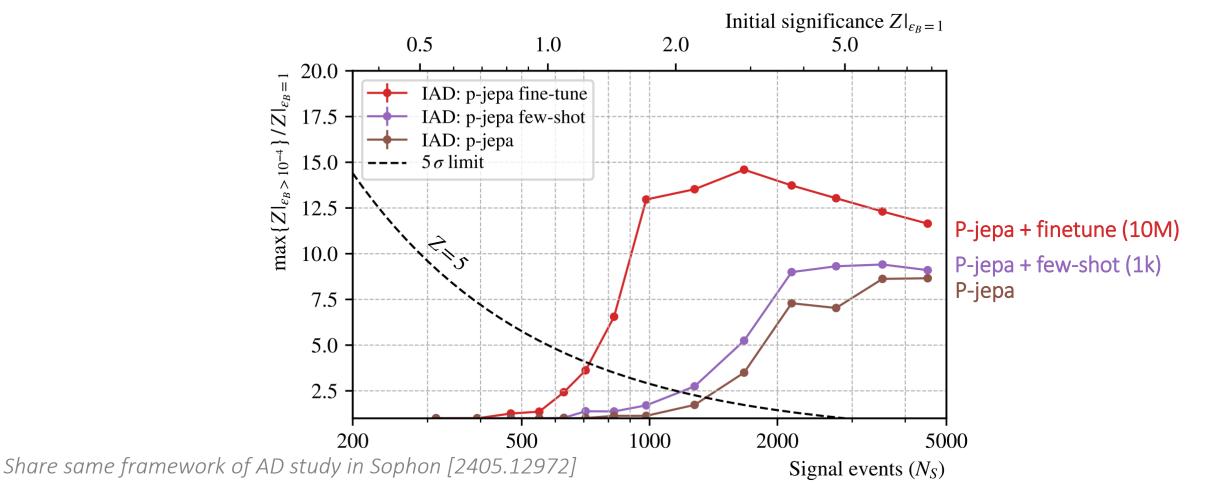
Share same framework of AD study in Sophon [2405.12972], originated from CWoLa [1708.02949]

Application: Anomaly Detection

> AD Significance enhanced using p-jepa:

More visible after transfer learning on labeled jets

> Work in progress to reduce the gap with supervised way (e.g. Sophon)



17

Summary and Outlook

> Proposed P-JEPA architecture for self-supervised learning on jets

>Jet representation learned from unlabeled data

> Performance tested on jet tagging and anomaly detection

More applications in progress -- stay tuned!

≻Take-away:

- Learning from jet without label is possible
- Joint-predictive architecture shows promising performance
- If data itself provides the knowledge, why not take it?

BOOSTIAMO the new physics search in a self-supervised way!

19

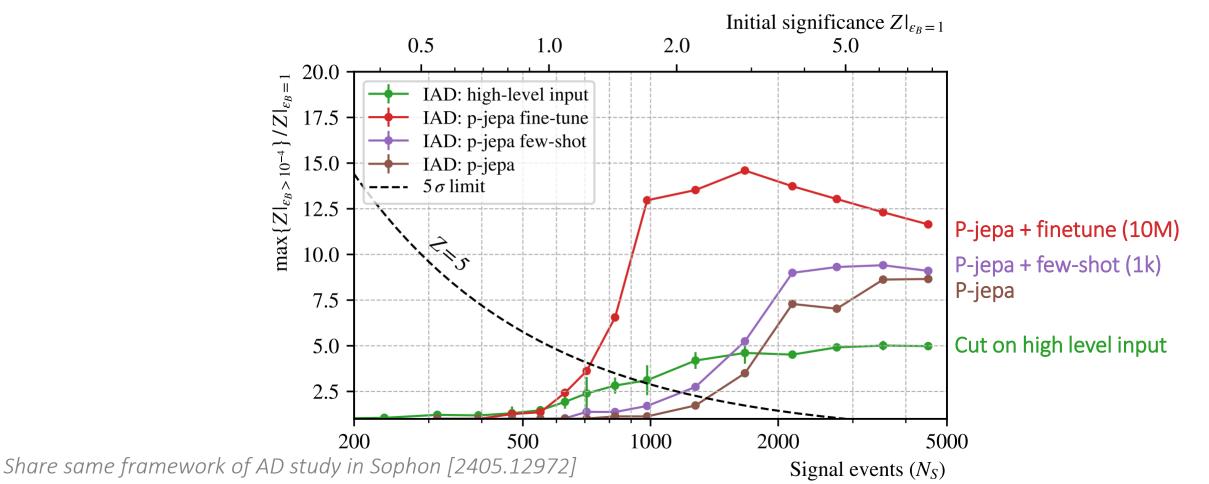
Backups

Application: Anomaly Detection

> AD Significance enhanced using p-jepa:

More visible after transfer learning on labeled jets

> Work in progress to reduce the gap with supervised way (e.g. Sophon)



20