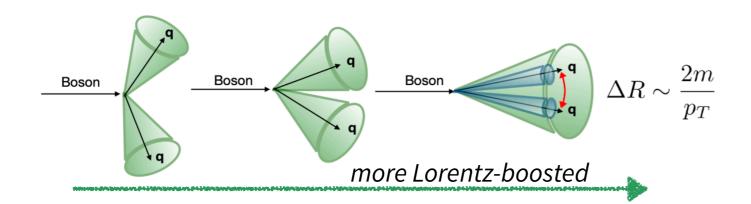


Based on <u>arXiv:2405.12972</u>

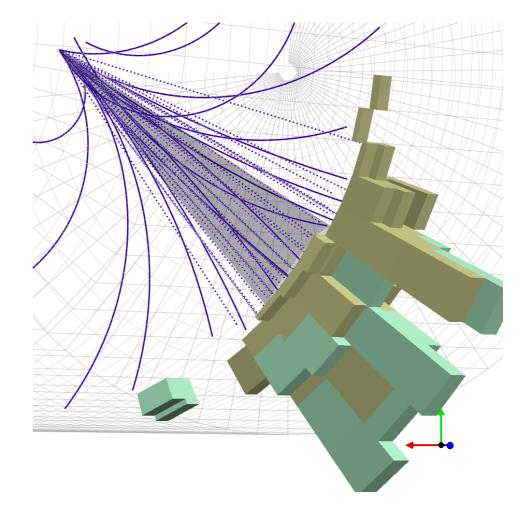
[Github] [Google Colab]

Accelerating resonance search via signature-oriented pre-training

Congqiao Li (PKU)


in collaboration with Antonios Agapitos¹, Jovin Drews², Javier Duarte³, Dawei Fu¹, Leyun Gao¹, Raghav Kansal³, Gregor Kasieczka², Louis Moureaux², Huilin Qu⁴, Cristina Mantilla Suarez⁵, Qiang Li¹

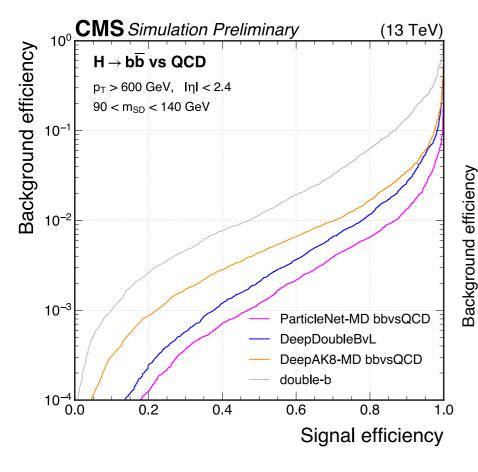
1) Peking U. 2) Hamburg U. 3) UC San Diego 4) CERN 5) FNAL


BOOST 2024, Genova 31 July, 2024

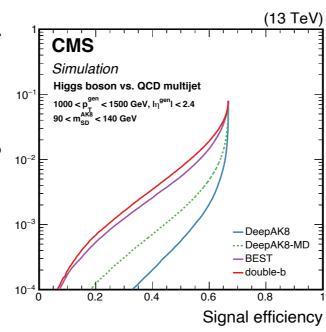
Boosted topology - a booster to sensitivity

→ Large-*R* jets: an important handle to analyze boosted topologies at the LHC

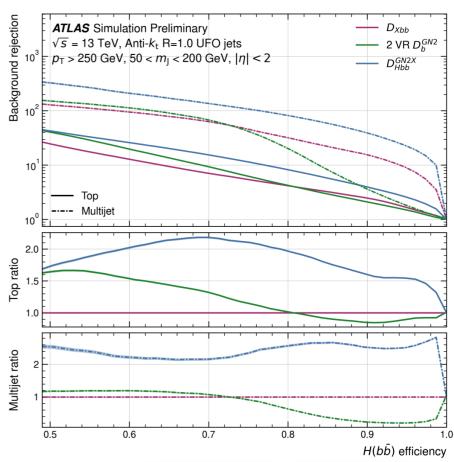
Applications to Higgs/di-Higgs/BSM searches in boosted H(X)→bb/cc̄ final states have been a success



- → Suitable for deploying cutting-edge deep learning techniques
 - most complex object to handle at the LHC (up to ~100 constituent particles)
 - advanced DNNs greatly boost analysis sensitivity


Inspiring progress on H→bb/cc̄ tagging

CMS-PAS-BTV-22-001



JINST 15 (2020) P06005

ATL-PHYS-PUB-2023-023

An upgrade of network

DeepAK8 → ParticleNet:

x5 Z QCD background rejection

Note: back to the results 5 years ago

DeepAK8 tagger already has ~x5 improved background rejection than early methods Recent GN2X tagger: ~x3 / QCD and x2

top background rejection

Inspiring progress on H→bb/cc̄ tagging

H → bb vs QCD

Background efficiency

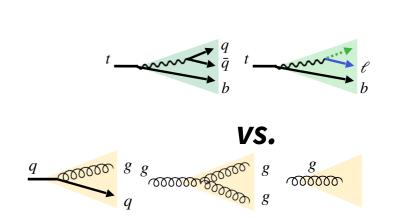
Implications

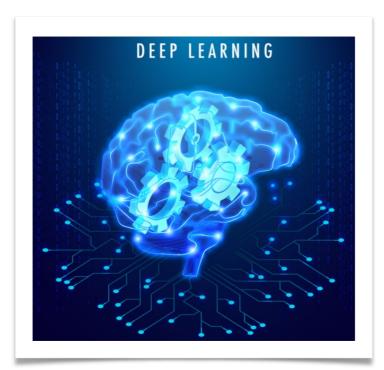
Advancements in NN design are the true driving force behind the gains in sensitivity!

(together with technical improvements in mass decorrelation, MC/data discrepancy control, and calibration...)

- However, this tool is available only in limited phase space
- Can we extend its usage to all possible boosted phase spaces?

An upgrade of network


DeepAK8 → ParticleNet:


Note: back to the results 5 years ago DeepAK8 tagger already has ~x5 / Recent GN2X tagger:

Large model for large-scale classification

View from jet tagging

- → Instead of training dedicated jet taggers, we consider multiclass classification with N(class) reaches o(100)
 - statistical insights: an ideal multi-class classifier is a stack of ideal binary classifiers (next slide)
- → The model should be **large** → carry enough capacity
- → The classes should be comprehensive → tagging ability can be further generalized by fine-tuning

View from a pre-training solution

- → We own a comprehensive jet dataset, and we hope to pre-train a foundational model to facilitate all LHC analyses exploring the large-R jet
- → Set the training task: let the model learn to connect "what a jet is like" to "which truth signature the jet reveals" (= jet label in our case)
 - * "jet labels" are simple signatures to explore→ pre-training it as a classifier is just a starting point in this sense!

Statistical property of multi-class classifier

→ Statistical theory shows that:

A <u>multi-class</u> classifier with minimum <u>cross-</u> <u>entropy loss estimates the probability ratios</u> on the input classes:

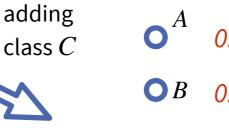
$$g_i(\mathbf{x}) = \frac{p(\text{class} = i \mid \mathbf{x})}{\sum_{j=1}^{N_{\text{out}}} p(\text{class} = j \mid \mathbf{x})}$$

hence it contains all the information the ideal N(N-1) binary classifiers can do

Statistical property of multi-class classifier

→ Statistical theory shows that:

A multi-class classifier with minimum crossentropy loss estimates the probability ratios on the input classes:


$$g_i(\mathbf{x}) = \frac{p(\text{class} = i | \mathbf{x})}{\sum_{j=1}^{N_{\text{out}}} p(\text{class} = j | \mathbf{x})}$$

hence it contains all the information the ideal N(N-1) binary classifiers can do

Two properties:

0.8 The optimal network 0.2

 O_{A_1} 0.55 splitting $p_A = p_{A_1} + p_{A_2}$ class Aremains the same

 p_A/p_R remains the same

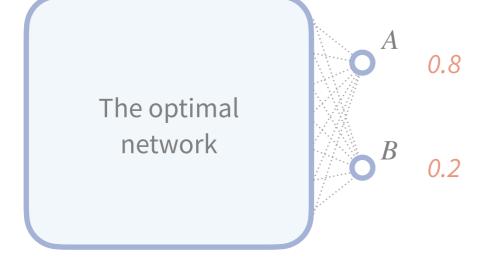
O_C 0.25

Statistical property of multi-class classifier

→ Statistical theory shows that:

A <u>multi-class</u> classifier with minimum <u>cross-</u> <u>entropy loss estimates the probability ratios</u> on the input classes:

$$g_i(\mathbf{x}) = \frac{p(\text{class} = i \mid \mathbf{x})}{\sum_{j=1}^{N_{\text{out}}} p(\text{class} = j \mid \mathbf{x})}$$

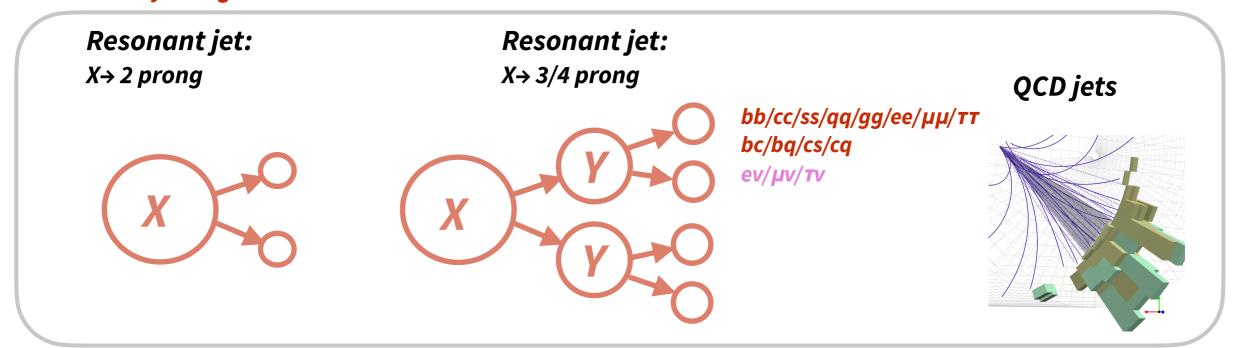

The key question in this context


Does the model's capacity still enable us to reach the best achievable performance in existing tasks?

Our result will show: Yes.

hence it contains all the information the ideal N(N-1) binary classifiers can do

Two properties:


the same

Introducing Sophon

arXiv:2405.12972

https://github.com/jet-universe/sophon

- → We explore this possibility in the CMS experiment first, and also in a recent pheno work:
 - Signature-Oriented Pre-training for Heavy-resonant ObservatioN
 - the model is based on Particle Transformer architecture [H.Qu, CL, S.Qian. arXiv:2202.03772]
 - a pre-trained model on a comprehensive dataset: JetClass-II
 - finely categorized labels:

contributed final states:

bb/cc/ss/qq/gg/ee/μμ/ττ bc/bq/cs/cq

all combination of Y decays, resulting to 4-prong or 3-prong

Key property: we do not focus on any specific *X* and *Y* masses Their masses are variables: ranges from 20-500 GeV

Introducing Sophon

arXiv:2405.12972

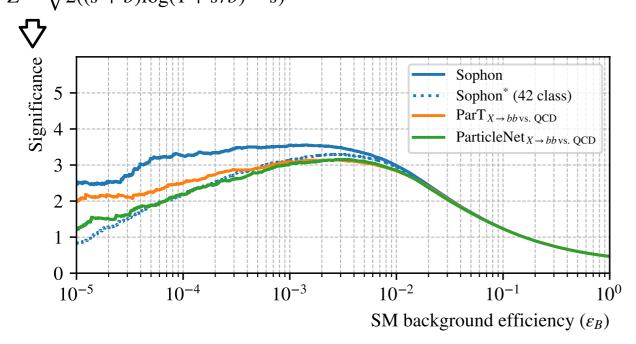
https://github.com/jet-universe/sophon

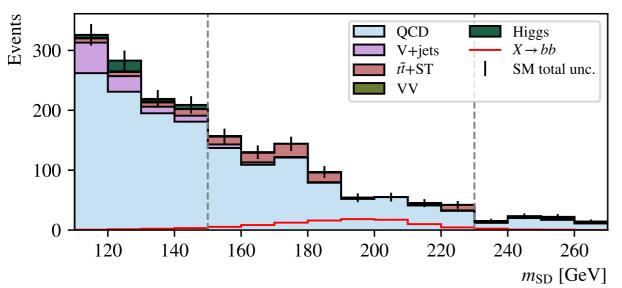
- → We explore this possibility in the CMS experiment first, and also in a recent pheno work:
 - Signature-Oriented Pre-training for Heavy-resonant ObservatioN
 - the model is based on Particle Transformer architecture [H.Qu, CL, S.Qian. arXiv:2202.03772]
 - a pre-trained model on a comprehensive dataset: JetClass-II
 - finely categorized labels:

Resonant iet:

Major types	Index range	Label names
Resonant jets: $X \to 2$ prong	0–14	$bb,cc,ss,qq,bc,cs,bq,cq,sq,gg,ee,\mu\mu, au_{ m h} au_{ m e}, au_{ m h} au_{ m h}, au_{ m h} au_{ m h}$
Resonant jets: $X \to 3$ or 4 prong	15–160	bbbb, bbcc, bbss, bbqq, bbgg, bbee, bb $\mu\mu$, bb $\tau_h\tau_e$, bb $\tau_h\tau_\mu$, bb $\tau_h\tau_h$, bbb, bbc, bbs, bbq, bbg, bbe, bb μ , cccc, ccs, ccqq, ccgg, ccee, cc $\mu\mu$, cc $\tau_h\tau_e$, cc $\tau_h\tau_\mu$, cc $\tau_h\tau_h$, ccb, ccc, ccs, ccq, ccg, cce, cc μ , ssss, ssqq, ssgg, ssee, ss $\mu\mu$, ss $\tau_h\tau_e$, ss $\tau_h\tau_\mu$, ss $\tau_h\tau_h$, ssb, ssc, sss, ssq, ssg, sse, ss μ , qqqq, qqgg, qqee, qq $\mu\mu$, qq $\tau_h\tau_e$, qq $\tau_h\tau_\mu$, qq $\tau_h\tau_h$, qqb, qqc, qqs, qqq, qqg, qqe, qq μ , gggg, ggee, gg $\mu\mu$, gg $\tau_h\tau_e$, gg $\tau_h\tau_\mu$, gg $\tau_h\tau_e$, gg $\tau_h\tau_e$, cr $h\tau_e$, sr $h\tau_e$, q $\tau_h\tau_e$, gr $h\tau_e$, br $h\tau_\mu$, cr $h\tau_\mu$, sr $h\tau_\mu$, qr $h\tau_\mu$, gr $h\tau_\mu$, br $h\tau_\mu$, cr $h\tau_\mu$, sr $h\tau_\mu$, qr $h\tau_\mu$, gr $h\tau_\mu$, br $h\tau_\mu$, cr $h\tau_\mu$, sr $h\tau_\mu$, qqb, qqc, qqs, bcq, csb, ccbq, ccsq, sscq, qqbc, qqbs, qqcs, bcsq, bcs, bcq, bsq, csq, bce ν , cse ν , bqe ν , cqe ν , sqe ν , qqe ν , bc $\mu\nu$, cs $\mu\nu$, bq $\mu\nu$, cq $\mu\nu$, sq $\mu\nu$, qq $\mu\nu$, bc $\tau_e\nu$, cs $\tau_e\nu$, bq $\tau_e\nu$, cq $\tau_e\nu$, sq $\tau_e\nu$, qq $\tau_e\nu$, bc $\tau_\mu\nu$, cs $\tau_\mu\nu$, bq $\tau_\mu\nu$, cq $\tau_\mu\nu$, sq $\tau_\mu\nu$, qq $\tau_\mu\nu$, bc $\tau_\mu\nu$, cs $\tau_\mu\nu$, bq $\tau_\mu\nu$, cq $\tau_\mu\nu$, sq $\tau_\mu\nu$, qq $\tau_\mu\nu$, bc $\tau_\mu\nu$, cs $\tau_\mu\nu$, bq $\tau_\mu\nu$, qq $\tau_\mu\nu$, qq $\tau_\mu\nu$, bc $\tau_\mu\nu$, cs $\tau_\mu\nu$, bq $\tau_\mu\nu$, qq $\tau_\mu\nu$, qq $\tau_\mu\nu$, bc $\tau_\mu\nu$, cs $\tau_\mu\nu$, bq $\tau_\mu\nu$, qq $\tau_\mu\nu$, qq $\tau_\mu\nu$, bc $\tau_\mu\nu$, cs $\tau_\mu\nu$, bq $\tau_\mu\nu$, qq $\tau_\mu\nu$, qq $\tau_\mu\nu$, bc $\tau_\mu\nu$, cs $\tau_\mu\nu$, bq $\tau_\mu\nu$, qq $\tau_\mu\nu$, qq $\tau_\mu\nu$, bc $\tau_\mu\nu$, cs $\tau_\mu\nu$, bq $\tau_\mu\nu$, qq $\tau_\mu\nu$, qq $\tau_\mu\nu$, bc $\tau_\mu\nu$, cs $\tau_\mu\nu$, bq $\tau_\mu\nu$, qq $\tau_\mu\nu$, qq $\tau_\mu\nu$, bc $\tau_\mu\nu$, cs $\tau_\mu\nu$, bq $\tau_\mu\nu$, qq $\tau_\mu\nu$, qq $\tau_\mu\nu$, bc $\tau_\mu\nu$, cs $\tau_\mu\nu$, qq $\tau_\mu\nu$, qq $\tau_\mu\nu$, pc $\tau_\mu\nu$, qq $\tau_\mu\nu$, pc $\tau_\mu\nu$, qq $\tau_\mu\nu$, pc $\tau_\mu\nu$, pq $\tau_\mu\nu$, pq $\tau_\mu\nu$, pq $\tau_\mu\nu$, pc $\tau_\mu\nu$, pq $\tau_\mu\nu$, pq $\tau_\mu\nu$, pq $\tau_\mu\nu$, pc $\tau_\mu\nu$, pq
QCD jets	161–187	bbccss,bbcc,bbcs,bbcs,bbc,bbs,bbs,

Resonant iet:


Key property: we do not focus on any specific *X* and *Y* masses Their masses are variables: ranges from 20-500 GeV


Sophon: performance benchmark

arXiv:2405.12972

Search significance:

Direct tagging ability $Z = \sqrt{2((s+b)\log(1+s/b) - s)}$

- Apply tagger selection
- Check discrimination power of

X (200 GeV) → **bb** signal vs. all backgrounds

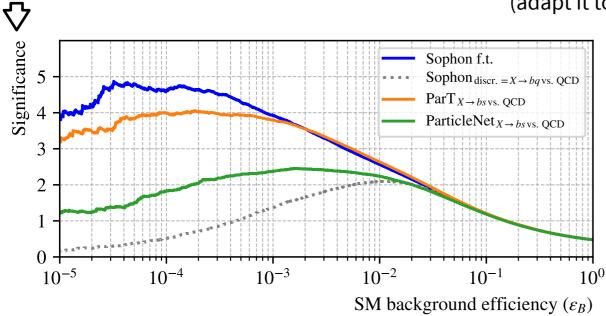
• Sophon (training on 188 classes) has best performance

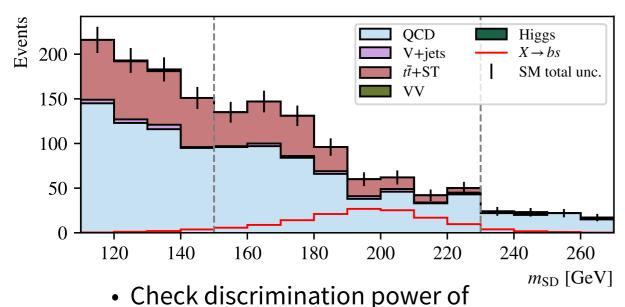
$$\operatorname{discr}(X \to bb \text{ vs. QCD}) = \frac{g_{X \to bb}}{g_{X \to bb} + \sum_{l=1}^{27} g_{\text{QCD}_{l}}}$$

- Performance gain does come from largescale classification (compared to **Sophon*** (42 classes))
- ParT and ParticleNet for binary classification: they represent the best performance we can reach in experiment now

Sophon: performance benchmark

arXiv:2405.12972

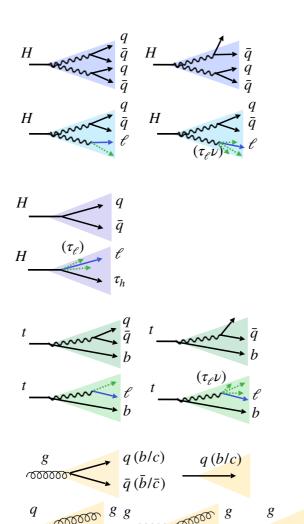

8


Search significance:

$Z = \sqrt{2((s+b)\log(1+s/b) - s)}$

Transfer learning ability

(adapt it to a brand new task)

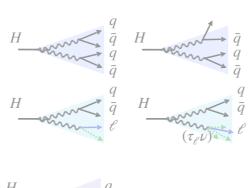

X (200 GeV) → **bs** signal vs. all backgrounds

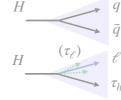
- Sophon (training on 188 classes) reaches the best performance after fine-tuned (via transfer learning)
- ParT and ParticleNet for binary X→bs vs QCD classification: they reveal the best performance we can reach in the experiment now

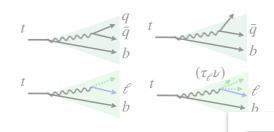
Application: CMS's Global ParT tagger

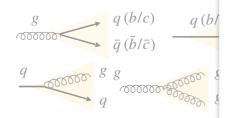
CMS-PAS-HIG-23-012

Process	Final state/ prongness	heavy flavour	# of classes
H→VV	qqqq	0c/1c/2c	3
(full-hadronic)	qqq		3
	evqq	0c/1c	2
11 .34047	μνqq		2
H→WW (semi-leptonic)	τ _e vqq		2
(Seriii Teptoriie)	$\tau_{\mu} vqq$		2
	$\tau_h vqq$		2
		bb	1
H→qq		СС	1
тт⊸үү		ss	1
		qq (q=u/d)	1
	ΤeTh		1
Η→ττ	$\tau_{\mu}\tau_{h}$		1
	$\tau_h \tau_h$		1
t→bW	bqq	1b + 0c/1c	2
(hadronic)	bq		2
	bev	1b	1
	bμv		1
t→bW (leptonic)	bτ _e v		1
(leptoriic)	$b\tau_{\mu}v$		1
	bτ _h v		1
		b	1
		bb	1
QCD		С	1
		cc	1
		others (light)	1


A global large-*R* mass-decorrelated tagger for **37-category classification**


- First time identifying the H→WW→4q signature with a jet tagger
- set a strong limit to κ_{2V} in the search of HH \rightarrow bbVV signal


Application: CMS's Global ParT tagger

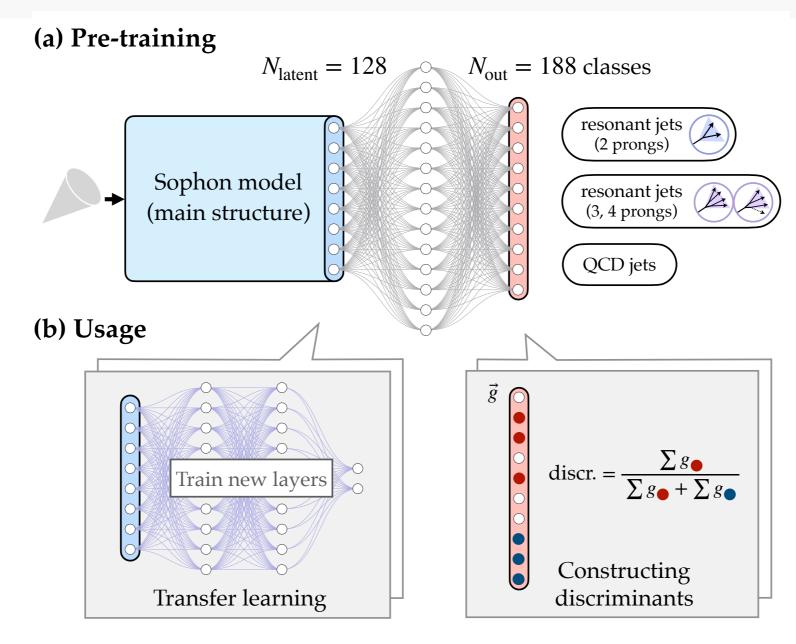

CMS-PAS-HIG-23-012

			# of classes
$H \rightarrow VV$	qqqq	0c/1c/2c	3
(full-hadronic)	qqq		3
	evqq	0c/1c	2
11 - \\A\\\\A\	µ∨qq		2
H→WW (semi-leptonic)	τ _e ∨qq		2
(com reptorne)	$\tau_{\mu} \lor qq$		2
	τ _h ∨qq		2
		bb	1
H→qq		cc	1
11 44		SS	1
		qq (q=u/d)	1
	TeTh		1
Η→ττ	$\tau_{\mu}\tau_{h}$		1
	$\tau_h \tau_h$		1
t→bW	bqq	1b + 0c/1c	2
(hadronic)	bq		2
	bev	1b	1
t→bW	bμv		1
(leptonic)	bτ _e v		1
(icptoriic)	$b\tau_{\mu} v$		1
	$b\tau_h v$		1
		b	1
		bb	1
QCD		С	1
		CC	1
		others (light)	1

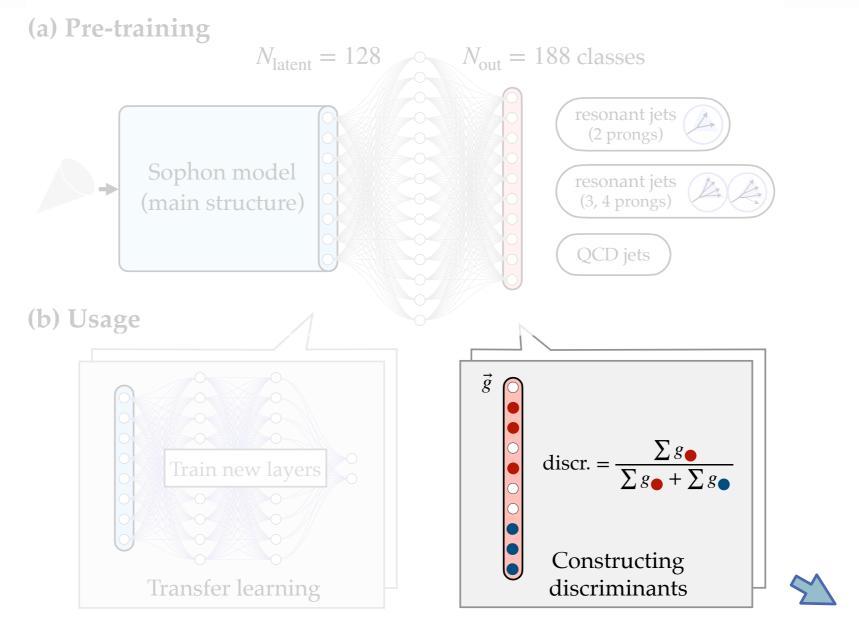
A global large-*R* mass-decorrelated tagger for **37-category classification**

- First time identifying the H→WW→4q signature with a jet tagger
- set a strong limit to κ_{2V} in the search of HH \rightarrow bbVV signal \circ using the tagget

(3 copies) (3 copies) H→ZZ classes: H→WW classes: H_{0,±}→2 prong classes: bbbb, bbcc, bbss, bbqq, cccc, ccss, ccqq, ssss, ssqq, qqqq, bbb, bbc, bbs, bbq, ccb, ccc, ccs, ccq, ssb, ssc, sss, ssq, qqb, cscs, csqq, qqqq, bb, cc, ss, qq, bc, bs, cs, gg, csc, css, csq, qqc, qqs, qqq, ee, $\mu\mu$, $\tau_h\tau_e$, $\tau_h\tau_\mu$, $\tau_h\tau_h$ csev, qqev, csμv, qqμv, csτ_ev, $qq\tau_e v$, $cs\tau_\mu v$, $qq\tau_\mu v$, $cs\tau_h v$, $qq\tau_h v$ t→bW classes: **QCD** classes: bWcs, bWqq, bWc, bWs, bWq, bWev, bb, cc, b, c, others $bW\mu v$, $bW\tau_e v$, $bW\tau_\mu v$, $bW\tau_h v$, Wcs, Wqq, Wev, W μ v, W τ_e v, W τ_μ v, $W\tau_h v$


314 classes in total (the next planned version)

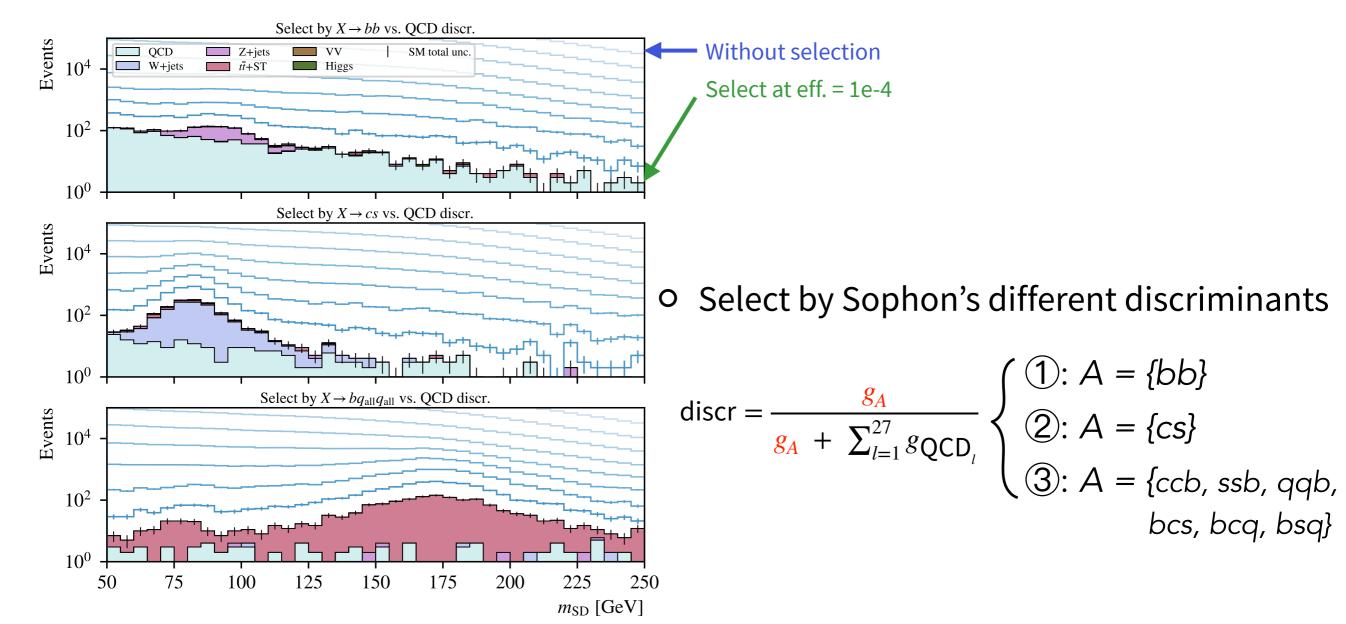
Conggiao Li (Peking University)


new possibility for B2G channels

Implications for LHC resonance search

Using Sophon

Using Sophon


Use it out of the box!

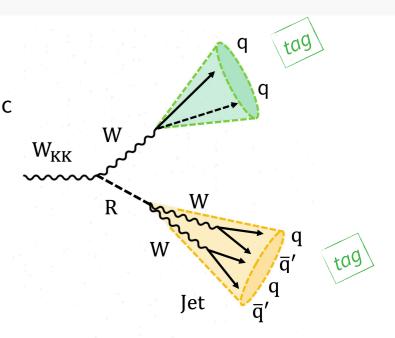
Construct a dedicated discr.

→ perform a bump hunt

Can we rediscover the SM particles?

- → Simulate 40fb⁻¹ LHC collision events, √s = 13 TeV, nPU=50
 - \bullet focus on the large-R jet trigger (triggered with Σp_T threshold and trimmed mass)
 - abundant QCD backgrounds
 - rediscover Z/W/t particles simply from the large-R jet's mass spectrum

More heavy resonances

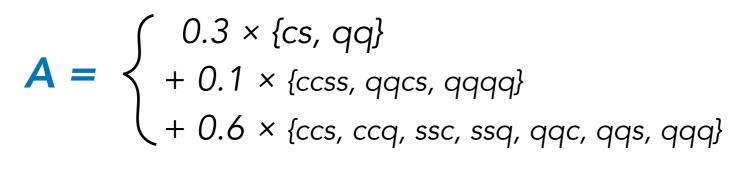

→ Consider triboson signal:

$$W'(m_{W'} = 3 \text{ TeV}) \rightarrow W \phi (m_{\phi} = 400 \text{ GeV}) \rightarrow WWW \stackrel{\text{(fully hadronic decays)}}{}$$

→ Optimize an event-level discr. from tagger discr.

discr =
$$\sum_{\text{jet}=1,2} \frac{g_{A,\text{jet}}}{g_{A,\text{jet}} + \sum_{l=1}^{27} g_{\text{QCD}_{l},\text{jet}}}$$
(sum for jets 1, 2)

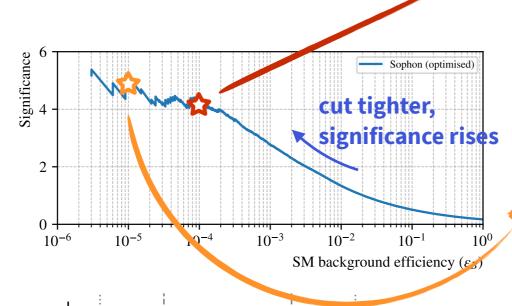
$$\mathbf{A} = \begin{cases} 0.3 \times \{\text{cs, qq}\} \\ + 0.1 \times \{\text{ccss, qqcs, qqqq}\} \\ + 0.6 \times \{\text{ccs, ccq, ssc, ssq, qqc, qqs, qqq}\} \end{cases}$$

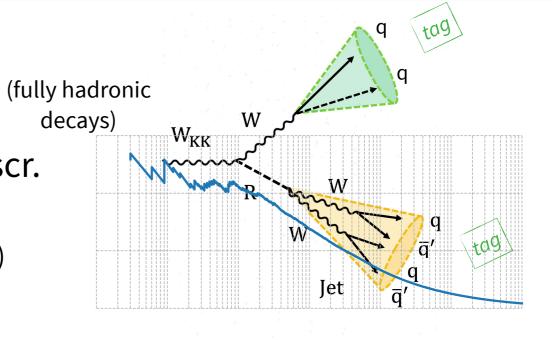

More heavy resonances

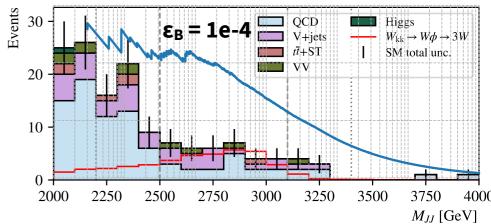
→ Consider triboson signal:

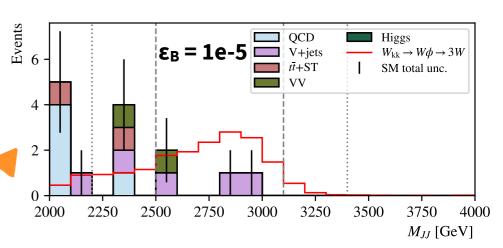
$$W'(m_{W'} = 3 \text{ TeV}) \rightarrow W \phi (m_{\phi} = 400 \text{ GeV}) \rightarrow WWW$$

→ Optimize an event-level discr. from tagger discr.

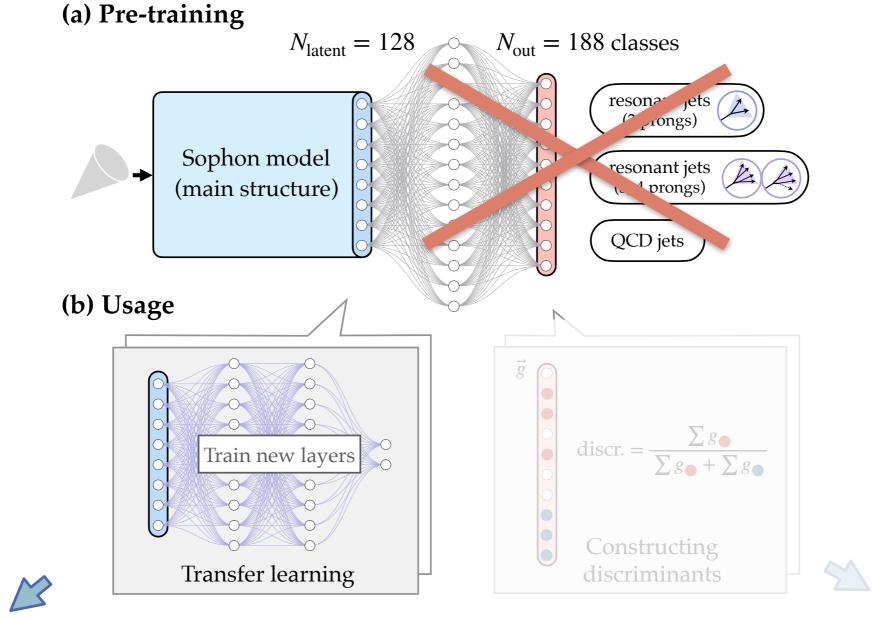

discr =
$$\sum_{\text{jet}=1,2} \frac{g_{A,\text{jet}}}{g_{A,\text{jet}}} + \sum_{l=1}^{27} g_{\text{QCD}_{l},\text{jet}}$$
(sum for jets 1, 2)



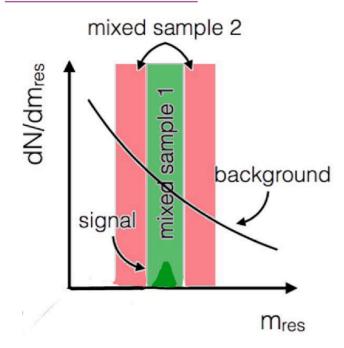


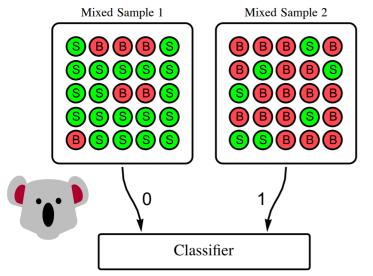

$$Z = \sqrt{2((s+b)\log(1+s/b) - s)}$$

in dijet inv. mass window **2500–3100 GeV**



Sophon's transfer learning

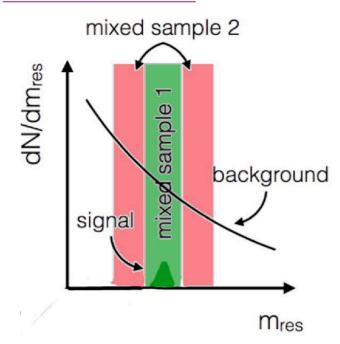


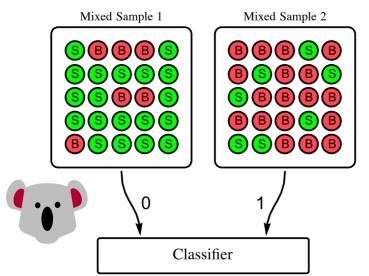

Use it out of the box!

- Transfer to uncovered tagging scenarios...
- facilitate anomaly detection (<u>weakly-supervised</u>, autoencoder)...
- more potential to unlock!

Background: anomaly detection in weakly-supervised approach

JHEP 10 (2017) 174

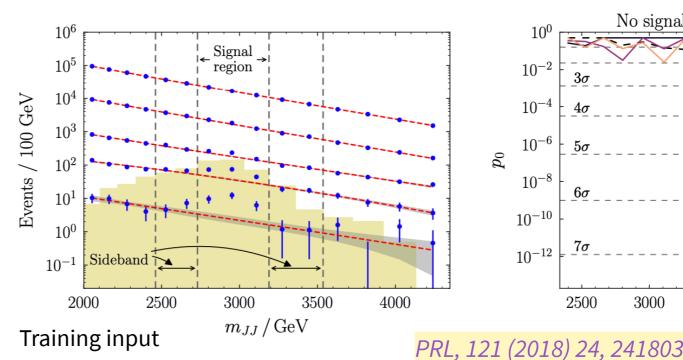


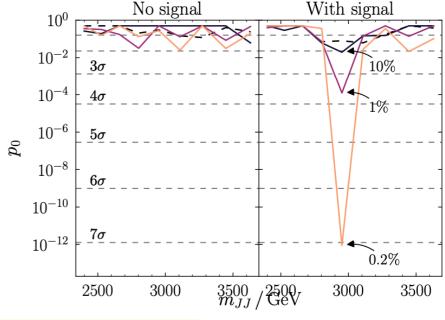

Equivalent effect for training S vs B

- → Recall the early work: CWoLa (classification without labels)
 Hunting
 - allow to detect anomalies purely from data
 - train a classifier for mass window vs mass sideband (mixed sample 1 vs 2)
 - ★ many improved approaches in recent years → very active field

Background: anomaly detection in weakly-supervised approach

JHEP 10 (2017) 174

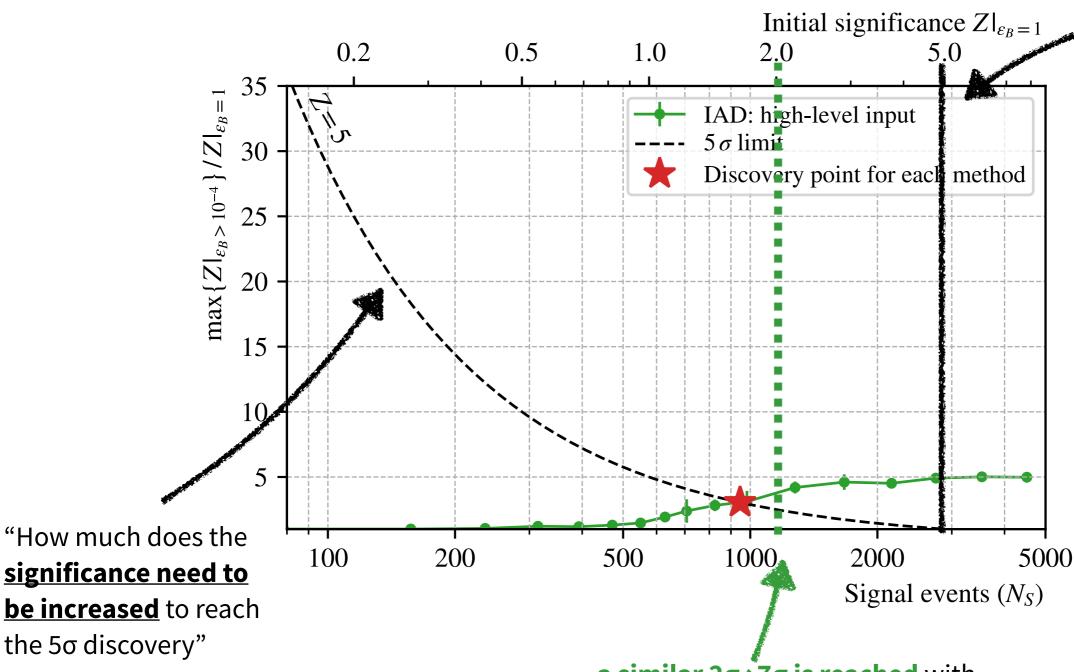




Equivalent effect for training S vs B

- → Recall the early work: CWoLa (classification without labels) Hunting
 - allow to detect anomalies purely from data
 - train a classifier for mass window vs mass sideband (mixed sample 1 vs 2)
 - ♦ many improved approaches in recent years → very active field

can discover $W' \rightarrow W\phi \rightarrow WWW$ signals see $2\sigma \rightarrow 7\sigma$ improvement

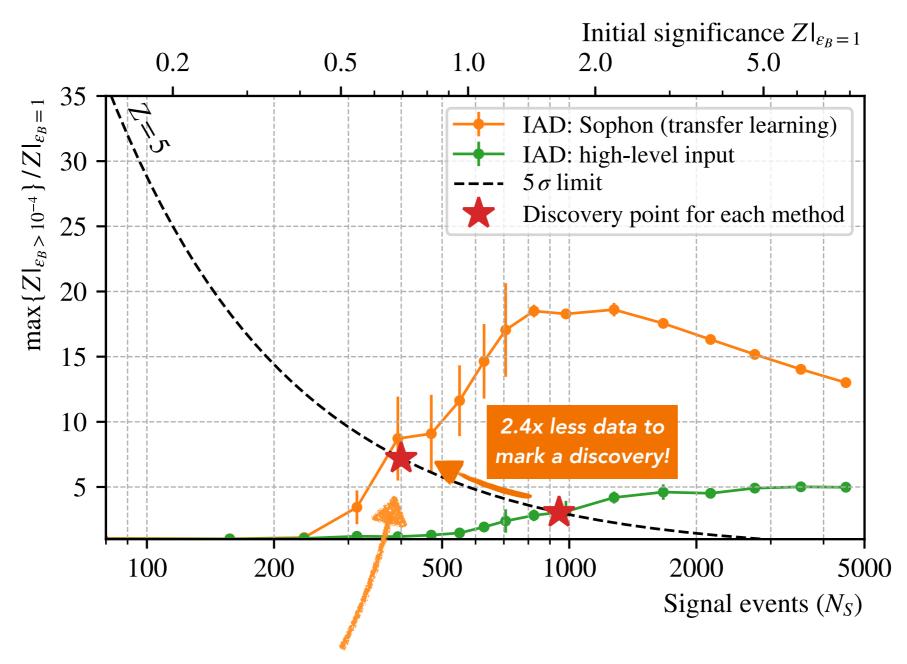

 $m_J, \sqrt{\tau_1^{(2)}}/\tau_1^{(1)}, \tau_{21}, \tau_{32}, \tau_{43}, n_{\rm trk},$

31 July, 2024

15

PRD, 99 (2019) 1, 014038

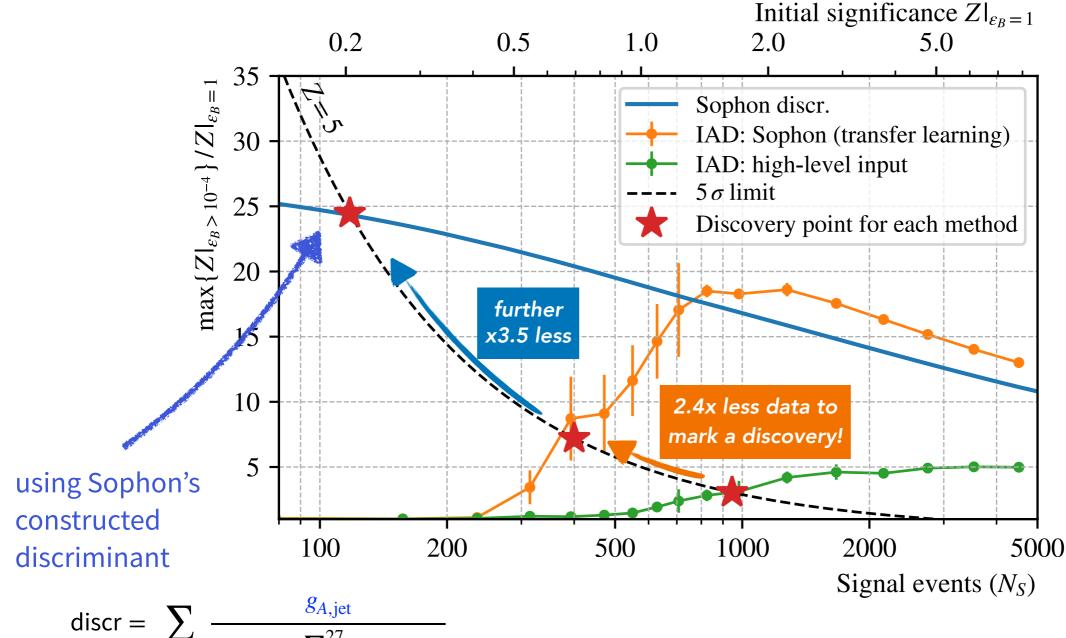
Dijet search capabilities


"If signal events reach this point,
with initial Z=5,
then we have already discovered the signal without needing to make a cut"

a similar $2\sigma \rightarrow 7\sigma$ is reached with

conventional AD approach; ~reproduce the result in

PRL, 121 (2018) 24, 241803


Dijet search capabilities

Combining Sophon's transfer learning (using Sophon's "knowledge") with AD marks a success

- More sensitive to low signal (even starting at ~0.6σ)
- Much improved S vs B distinguishability than using high-level input

Dijet search capabilities

$$\operatorname{discr} = \sum_{\text{jet}=1,2} \frac{g_{A,\text{jet}}}{g_{A,\text{jet}} + \sum_{l=1}^{27} g_{\text{QCD}_{l},\text{jet}}}$$

$$\mathbf{A} = \begin{cases} 0.3 \times \{\text{cs, qq}\} \\ + 0.1 \times \{\text{ccss, qqcs, qqqq}\} \\ + 0.6 \times \{\text{ccs, ccq, ssc, ssq, qqc, qqs, qqq}\} \end{cases}$$

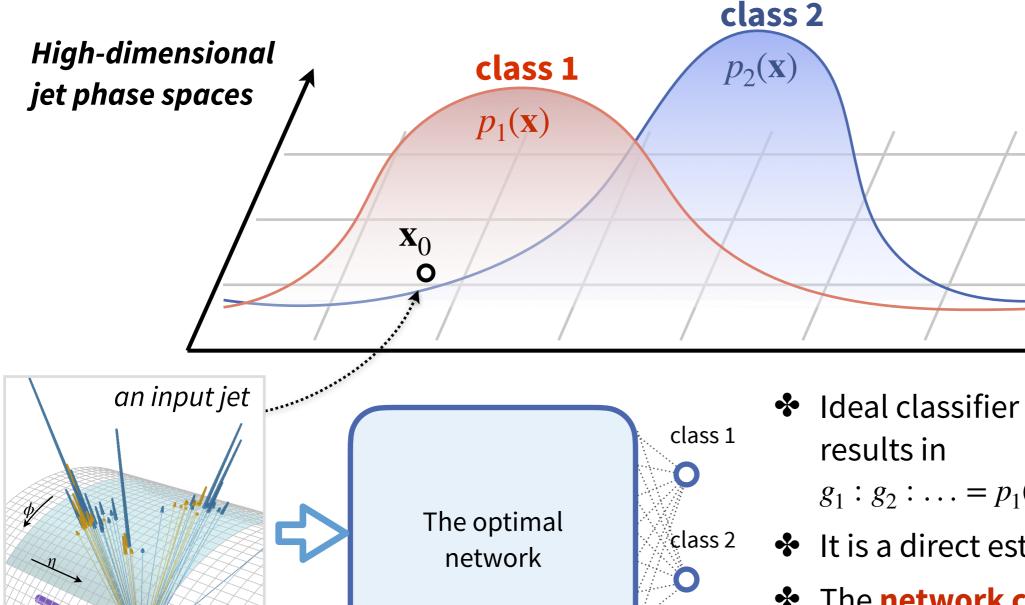
arXiv:2405.12972

Summary and outlook

https://github.com/jet-universe/sophon

Try this out [Google Colab]

- → Sophon releases a lot of new opportunities for future LHC experiments
 - simply viewed as a "global large-R jet tagger" → should bring benefits of the
 advanced NN to ~all hadronic final-state searches
 - also viewed as a pre-trained jet model: a foundation model tailored for LHC analyses
- → Proposed the **JetClass-II** dataset and the **Sophon** model
 - JetClass-II covers more comprehensive phase spaces and can be a good playground to develop future foundation models
 - the Sophon model can also be helpful to deliver future LHC pheno researches
 - optimizing sensitivity for dedicated searches/anomaly detection/novel paradigms...
 - this work demonstrates that it can be a great booster to LHC's broad resonance search programs
- → Stay tuned to their applications to real LHC experiments!


31 July, 2024

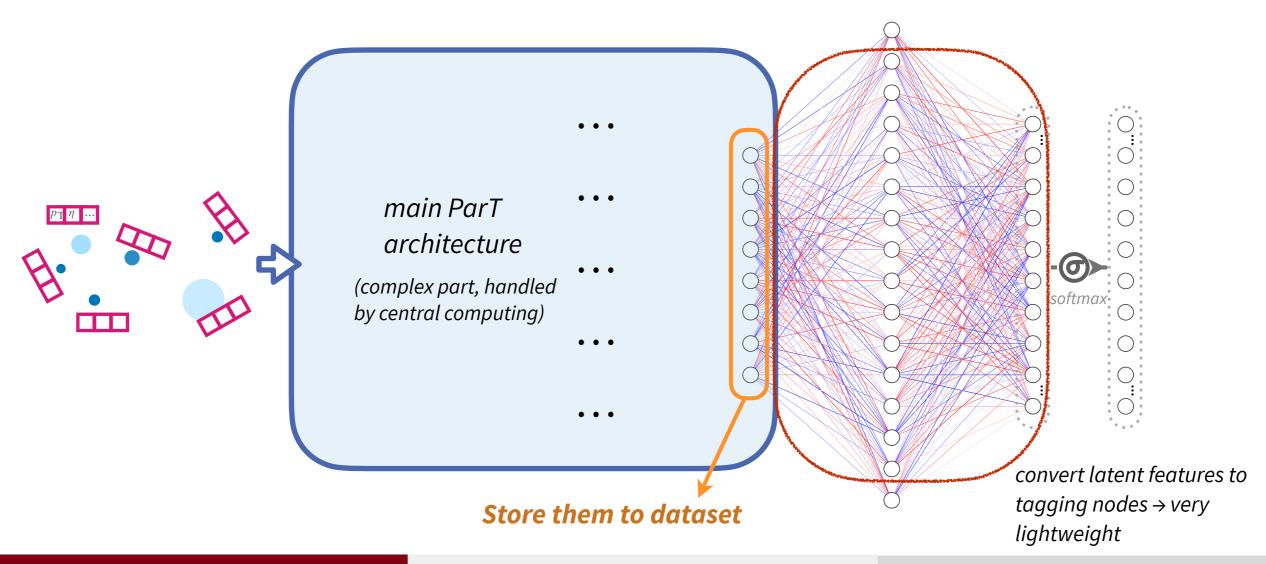
20

Backup

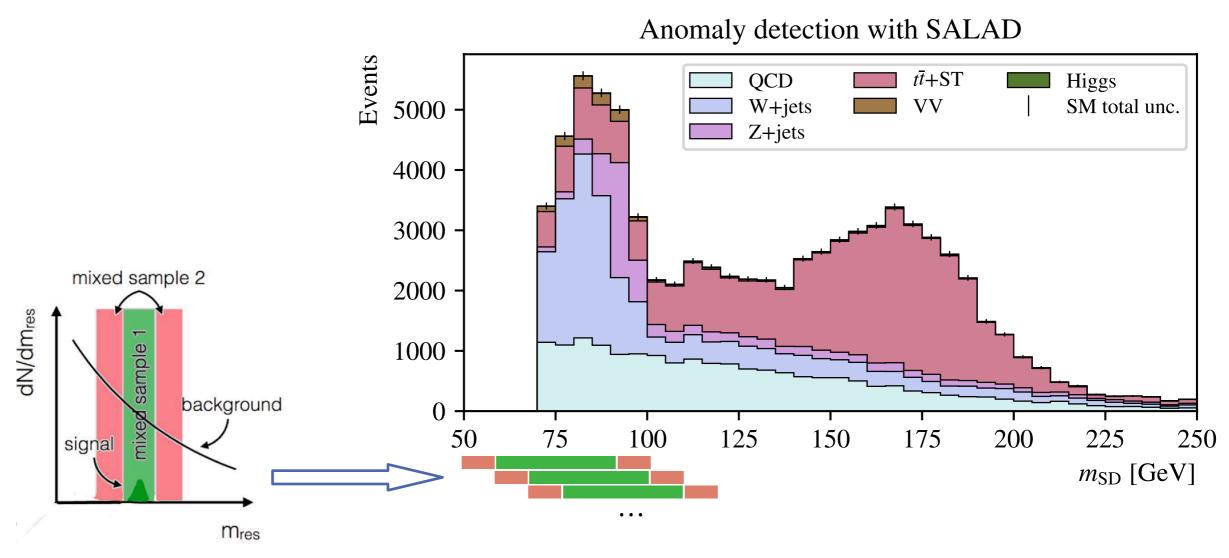
Statistical essence of jet tagging problem

- → Question: where is the limit of jet tagging?
- → Answer: the probability density ratio of two classes provides the optimal tagging

Ideal classifier network


$$g_1: g_2: \ldots = p_1(\mathbf{x}_0): p_2(\mathbf{x}_0): \ldots$$

- ♣ It is a direct estimation of p
- The **network capacity** decides how close the estimation is


How to deploy the model to LHC experiments?

→ Implies how we can do future analysis

- hidden layer neurons values are stored in official sample
- analysis can use them for fine-tuning (equivalently, just think that they are special jet variables)
- easy to implement & integrate into existing workflow

Sophon's transfer learning × anomaly detection

- → Do SALAD (similar to CWOLA Hunt) in each sliding window
 - purify those peculiar jets in that mass window
- → Sophon's latent space has encoded fruitful knowledge on "final-state properties"